Mating system of Calluna vulgaris: self-sterility and outcrossing estimations

1998 ◽  
Vol 76 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Grégory Mahy ◽  
Anne-Laure Jacquemart

The evolutionary significance of a mixed mating system is currently under debate. Calluna vulgaris (L). Hull, a widespread European shrub, is likely to undergo mixed mating because of geitonogamy. Mating system was investigated in three populations of C. vulgaris by means of greenhouse controlled crosses, pollen tube observations, and outcrossing rate estimations from allozyme markers. The species is highly self-sterile, most probably as a result of early inbreeding depression. Mean fruit set and mean seed number per fruit following hand self-pollination were 48 and 13%, respectively, of those following cross-pollination. Pollen tubes produced by self pollen penetrated the ovary with the same success as those from cross-pollination. Multilocus estimates of the outcrossing rates ranged from 0.71 to 0.90, and two estimates were significantly different from 1.00. Calluna vulgaris could thus be classified as being mixed mating with predominant allogamy. Single-locus estimates did not differ significantly from multilocus estimates suggesting that biparental inbreeding did not contribute to the apparent selfing rate. The maintenance of high early inbreeding depression despite an intermediate level of selfing is discussed with respect to recent theories on mating system evolution. Key words: Calluna vulgaris, mating system, self-sterility, pollen tubes, outcrossing rate, inbreeding depression.

2019 ◽  
Vol 124 (1) ◽  
pp. 179-187 ◽  
Author(s):  
A Rod Griffin ◽  
Brad M Potts ◽  
René E Vaillancourt ◽  
J Charles Bell

Abstract Background and Aims Many plants exhibit a mixed mating system. Published models suggest that this might be an evolutionarily stable rather than a transitional state despite the presence of inbreeding depression, but there is little empirical evidence. Through field experimentation, we studied the role of inbreeding depression in eliminating inbred progeny from the reproductive cohort of the forest tree Eucalyptus regnans, and demonstrate a stable mixed primary mating system over two successive generations. Methods Two field experiments were conducted using seed from natural populations. We sowed open-pollinated seeds to simulate a natural regeneration event and determined isozyme genotypes of dominant and suppressed individuals over 10 years. We also planted a mixture of open-pollinated, outcross and selfed families with common maternal parentage; monitored survival of cross types over 29 years; and determined the percentage of outcrosses in open-pollinated seed from a sample of reproductively mature trees using microsatellite analysis. Key Results Both experiments demonstrated progressive competitive elimination of inbred plants. By 29 years, the reproductive cohort in the planted experiment consisted only of outcrosses which produced seed which averaged 66 % outcrosses, similar to the estimate for the parental natural population (74 %). Conclusions Selective elimination of inbred genotypes during the intense intra-specific competition characteristic of the pre-reproductive phase of the life cycle of E. regnans results in a fully outcrossed reproductive population, in which self-fertility is comparable with that of its parental generation. The mixed mating system may be viewed as an unavoidable consequence of the species’ reproductive ecology, which includes the demonstrated effects of inbreeding depression, rather than a strategy which is actively favoured by natural selection.


Heredity ◽  
2009 ◽  
Vol 102 (4) ◽  
pp. 349-356 ◽  
Author(s):  
J M Greeff ◽  
G J Jansen van Vuuren ◽  
P Kryger ◽  
J C Moore

2019 ◽  
Vol 49 (4) ◽  
pp. 277-282 ◽  
Author(s):  
Jônatas Chagas de OLIVEIRA ◽  
Polinar Bandeira RUFINO ◽  
Hellen Sandra Freires da Silva AZÊVEDO ◽  
Adna Cristina Barbosa de SOUSA ◽  
Giselle Mariano Lessa de ASSIS ◽  
...  

ABSTRACT The search for alternatives to increase productivity and sustainability of livestock production in the Amazon region without increasing deforestation is challenging. Mixed pastures of grasses with forage peanut (Arachis pintoi) have shown positive economic impacts. However, gaps in the knowledge of the reproductive biology of A. pintoi have limited the development of new cultivars adapted to the environmental variations in the Brazilian Amazon. Pasture consortiums of Brachiaria humidicola with forage peanuts (cv. Mandobi) resulted in a 42% increase in weight gain productivity. New cultivars better adapted to the Amazon climate should bring even greater gains. We evaluated the mating system in twenty A. pintoi accessions, and approximately 40 offspring per accession genotyped with eight microsatellites (or markers). The parameters of genetic diversity and inbreeding, the outcrossing rate and coancestry were calculated. The observed heterozygosity was significantly higher and the fixation index was significantly lower in adults compared with the offspring. The crossing rate was variable among genotypes (2 to 80%), and the mean outcrossing rate was 36%. These results indicate that pollinator presence in pastures can influence gene flow in A. pintoi more than expected. Arachis pintoi presented a mixed mating system with a predominance of selfing, and families presented inbreeding and different levels of relatedness. New strategies of genotype conservation are needed to avoid pollinator-mediated crossing between accessions.


1995 ◽  
Vol 65 (3) ◽  
pp. 209-222 ◽  
Author(s):  
J. Ronfort ◽  
D. Couvet

SummaryPrevious theoretical studies of the evolution of the selfing rate have shown that mixed mating systems are not evolutionary stable states. Such models have, however, not included the effects of population structure and thus biparental inbreeding together with the evolution of selfing rates and inbreeding depression. In order to examine selection on selfing rates in structured populations, a stochastic model simulating a finite population with partial selfing and restricted pollen and seed dispersal has been developed. Selection on the mating system was followed by introducing modifiers affecting the selfing rate. The major result was that, with density dependent recruitment, a process which maintains the population structure necessary for biparental inbreeding to occur, a mixed mating system could be maintained. This result was associated with an increase of the mutation load with high selfing rates, and the selected selfing rate depended on the degree of population structure rather than on the initial selfing rate. With low dominance of deleterious alleles, complete allogamy can be selected for. Further studies showed that the more general condition of spatial heterogeneity of recruitment can lead to similar results, the most important condition being the maintenance of genetic structure within populations. A brief survey of the empirical literature shows that a positive relationship between the magnitude of inbreeding depression and the inbreeding coefficient within populations has been observed, in support of the present model.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2764 ◽  
Author(s):  
Pilar Suárez-Montes ◽  
Mariana Chávez-Pesqueira ◽  
Juan Núñez-Farfán

IntroductionTheory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms. However, the present-day genetic structure of populations may bear the signature of past demography events. Here, we examine the effects of rainforest fragmentation on the genetic diversity, population structure, mating system (outcrossing rate), indirect gene flow and contemporary pollen dynamics in the understory herbAphelandra aurantiaca. Also, we assessed its present-day genetic structure under different past demographic scenarios.MethodsTwelve populations ofA. aurantiacawere sampled in large (4), medium (3), and small (5) forest fragments in the lowland tropical rainforest at Los Tuxtlas region. Variation at 11 microsatellite loci was assessed in 28–30 reproductive plants per population. In two medium- and two large-size fragments we estimated the density of reproductive plants, and the mating system by analyzing the progeny of different mother plants per population.ResultsDespite prevailing habitat fragmentation, populations ofA. aurantiacapossess high genetic variation (He = 0.61), weak genetic structure (Rst = 0.037), and slight inbreeding in small fragments. Effective population sizes (Ne) were large, but slightly lower in small fragments. Migrants derive mostly from large and medium size fragments. Gene dispersal is highly restricted but long distance gene dispersal events were detected.Aphelandra aurantiacashows a mixed mating system (tm = 0.81) and the outcrossing rate have not been affected by habitat fragmentation. A strong pollen pool structure was detected due to few effective pollen donors (Nep) and low distance pollen movement, pointing that most plants received pollen from close neighbors. Past demographic fluctuations may have affected the present population genetic structure as Bayesian coalescent analysis revealed the signature of past population expansion, possibly during warmer conditions after the last glacial maximum.DiscussionHabitat fragmentation has not increased genetic differentiation or reduced genetic diversity ofA. aurantiacadespite dozens of generations since the onset of fragmentation in the region of Los Tuxtlas. Instead, past population expansion is compatible with the lack of observed genetic structure. The predicted negative effects of rainforest fragmentation on genetic diversity and population structure ofA. aurantiacaseem to have been buffered owing to its large effective populations and long-distance dispersal events. In particular, its mixed-mating system, mostly of outcrossing, suggests high efficiency of pollinators promoting connectivity and reducing inbreeding. However, some results point that the effects of fragmentation are underway, as two small fragments showed higher membership probabilities to their population of origin, suggesting genetic isolation. Our findings underscore the importance of fragment size to maintain genetic connectivity across the landscape.


2018 ◽  
Vol 105 (7) ◽  
pp. 1154-1164 ◽  
Author(s):  
Eric F. LoPresti ◽  
Jennifer I. Van Wyk ◽  
John M. Mola ◽  
Katherine Toll ◽  
Timothy J. Miller ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0123445 ◽  
Author(s):  
Naoki Tani ◽  
Yoshihiko Tsumura ◽  
Keita Fukasawa ◽  
Tomoyuki Kado ◽  
Yuriko Taguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document