scholarly journals Shallow penetrometer tests: theoretical and experimental modelling of the rotation stage

2020 ◽  
Vol 57 (4) ◽  
pp. 580-594
Author(s):  
M.A. Schneider ◽  
S.A. Stanier ◽  
D.J. White ◽  
M.F. Randolph

Shallow penetrometers are a new type of device that measures the properties of surficial offshore sediments via multi-phase tests involving penetration, dissipation, and rotation stages. In fine-grained soils such as silts and clays, these testing stages yield properties relevant to subsea pipeline and shallow foundation design; namely, undrained strength, consolidation, and interface friction. This paper describes the fundamentals of the rotation stage, including models required for data interpretation, encompassing both a total and an effective stress framework. Additionally, new relationships to evaluate the pore pressure scaling factor, which is a key interpretation parameter required to convert discrete measurements of pore pressure on the penetrometers to an average pore pressure over the contact area, are developed based on large-deformation finite element simulations. Results from an experimental campaign using kaolin clay samples are presented, illustrating the potential of the devices to rapidly and repeatably measure interface friction properties of fine-grained sediments offshore. The results compare well with comparative measures obtained from shear box tests conducted at similarly low effective stress levels. Recommendations regarding future in situ applications are given at end of the paper.

2020 ◽  
Vol 57 (4) ◽  
pp. 568-579 ◽  
Author(s):  
M.A. Schneider ◽  
S.A. Stanier ◽  
D.J. White ◽  
M.F. Randolph

Shallow penetrometers are devices that penetrate into and measure the properties of surficial offshore sediments via multi-phase tests involving penetration, dissipation, and rotation stages. In fine-grained soils such as silts and clays, these testing stages yield undrained strength, consolidation, and friction properties relevant to subsea pipeline and shallow foundation design. This paper describes toroid and hemiball devices of the scale for use in box-core samples and associated interpretation methods for the penetration and dissipation stages. The aim of the paper is to provide all tools needed to design and interpret these tests. New large-deformation finite element (LDFE) dissipation solutions are presented, which can be used for back-analysis of the dissipation stage. Results of an extensive laboratory proof testing exercise in kaolin clay, for both the hemiball and toroid penetrometers, are also reported. These results highlight the potential of the two devices to quickly and economically assess strength and consolidation characteristics of fine-grained sediments in box-core samples recovered to the deck of a site investigation vessel.


2020 ◽  
Vol 224 (3) ◽  
pp. 1523-1539
Author(s):  
Lisa Winhausen ◽  
Alexandra Amann-Hildenbrand ◽  
Reinhard Fink ◽  
Mohammadreza Jalali ◽  
Kavan Khaledi ◽  
...  

SUMMARY A comprehensive characterization of clay shale behavior requires quantifying both geomechanical and hydromechanical characteristics. This paper presents a comparative laboratory study of different methods to determine the water permeability of saturated Opalinus Clay: (i) pore pressure oscillation, (ii) pressure pulse decay and (iii) pore pressure equilibration. Based on a comprehensive data set obtained on one sample under well-defined temperature and isostatic effective stress conditions, we discuss the sensitivity of permeability and storativity on the experimental boundary conditions (oscillation frequency, pore pressure amplitudes and effective stress). The results show that permeability coefficients obtained by all three methods differ less than 15 per cent at a constant effective stress of 24 MPa (kmean = 6.6E-21 to 7.5E-21 m2). The pore pressure transmission technique tends towards lower permeability coefficients, whereas the pulse decay and pressure oscillation techniques result in slightly higher values. The discrepancies are considered minor and experimental times of the techniques are similar in the range of 1–2 d for this sample. We found that permeability coefficients determined by the pore pressure oscillation technique increase with higher frequencies, that is oscillation periods shorter than 2 hr. No dependence is found for the applied pressure amplitudes (5, 10 and 25 per cent of the mean pore pressure). By means of experimental handling and data density, the pore pressure oscillation technique appears to be the most efficient. Data can be recorded continuously over a user-defined period of time and yield information on both, permeability and storativity. Furthermore, effective stress conditions can be held constant during the test and pressure equilibration prior to testing is not necessary. Electron microscopic imaging of ion-beam polished surfaces before and after testing suggests that testing at effective stresses higher than in situ did not lead to pore significant collapse or other irreversible damage in the samples. The study also shows that unloading during the experiment did not result in a permeability increase, which is associated to the persistent closure of microcracks at effective stresses between 24 and 6 MPa.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Adam Soule ◽  
Michael Zoeller ◽  
Carolyn Parcheta

AbstractHawaiian and other ocean island lava flows that reach the coastline can deposit significant volumes of lava in submarine deltas. The catastrophic collapse of these deltas represents one of the most significant, but least predictable, volcanic hazards at ocean islands. The volume of lava deposited below sea level in delta-forming eruptions and the mechanisms of delta construction and destruction are rarely documented. Here, we report on bathymetric surveys and ROV observations following the Kīlauea 2018 eruption that, along with a comparison to the deltas formed at Pu‘u ‘Ō‘ō over the past decade, provide new insight into delta formation. Bathymetric differencing reveals that the 2018 deltas contain more than half of the total volume of lava erupted. In addition, we find that the 2018 deltas are comprised largely of coarse-grained volcanic breccias and intact lava flows, which contrast with those at Pu‘u ‘Ō‘ō that contain a large fraction of fine-grained hyaloclastite. We attribute this difference to less efficient fragmentation of the 2018 ‘a‘ā flows leading to fragmentation by collapse rather than hydrovolcanic explosion. We suggest a mechanistic model where the characteristic grain size influences the form and stability of the delta with fine grain size deltas (Pu‘u ‘Ō‘ō) experiencing larger landslides with greater run-out supported by increased pore pressure and with coarse grain size deltas (Kīlauea 2018) experiencing smaller landslides that quickly stop as the pore pressure rapidly dissipates. This difference, if validated for other lava deltas, would provide a means to assess potential delta stability in future eruptions.


SPE Journal ◽  
2021 ◽  
pp. 1-21
Author(s):  
Saeed Rafieepour ◽  
Stefan Z. Miska ◽  
Evren M. Ozbayoglu ◽  
Nicholas E. Takach ◽  
Mengjiao Yu ◽  
...  

Summary In this paper, an extensive series of experiments was performed to investigate the evolution of poromechanical (dry, drained, undrained, and unjacketed moduli), transport (permeability), and strength properties during reservoir depletion and injection in a high-porosity sandstone (Castlegate). An overdetermined set of eight poroelastic moduli was measured as a function of confining pressure (Pc) and pore pressure (Pp). The results showed larger effect on pore pressure at low Terzaghi’s effective stress (nonlinear trend) during depletion and injection. Moreover, the rock sample is stiffer during injection than depletion. At the same Pc and Pp, Biot’s coefficient and Skempton’s coefficient are larger in depletion than injection. Under deviatoric loading, absolute permeability decreased by 35% with increasing effective confining stress up to 20.68 MPa. Given these variations in rock properties, modeling of in-situ-stress changes using constant properties could attain erroneous predictions. Moreover, constant deviatoric stress-depletion/injection failure tests showed no changes or infinitesimal variations of strength properties with depletion and injection. It was found that failure of Castlegate sandstone is controlled by simple effective stress, as postulated by Terzaghi. Effective-stress coefficients at failure (effective-stress coefficient for strength) were found to be close to unity (actual numbers, however, were 1.03 for Samples CS-5 and CS-9 and 1.04 for Sample CS-10). Microstructural analysis of Castlegate sandstone using both scanning electron microscope (SEM) and optical microscope revealed that the changes in poroelastic and transport properties as well as the significant hysteresis between depletion and injection are attributed to the existence and distribution of compliant components such as pores, microcracks, and clay minerals.


Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 948-956 ◽  
Author(s):  
Douglas H. Green ◽  
Herbert F. Wang

The pore pressure response of saturated porous rock subjected to undrained compression at low effective stresses are investigated theoretically and experimentally. This behavior is quantified by the undrained pore pressure buildup coefficient, [Formula: see text] where [Formula: see text] is fluid pressure, [Formula: see text] is confining pressure, and [Formula: see text] is the mass of fluid per unit bulk volume. The measured values for B for three sandstones and a dolomite arc near 1.0 at zero effective stress and decrease with increasing effective stress. In one sandstone, B is 0.62 at 13 MPa effective stress. These results agree with the theories of Gassmann (1951) and Bishop (1966), which assume a locally homogeneous solid framework. The decrease of B with increasing effective stress is probably related to crack closure and to high‐compressibility materials within the rock framework. The more general theories of Biot (1955) and Brown and Korringa (1975) introduce an additional parameter, the unjacketed pore compressibility, which can be determined from induced pore pressure results. Values of B close to 1 imply that under appropriate conditions within the crust, zones of low effective pressure characterized by low seismic wave velocity and high wave attenuation could exist. Also, in confined aquifer‐reservoir systems at very low effective stress states, the calculated specific storage coefficient is an order of magnitude larger than if less overpressured conditions prevailed.


1995 ◽  
Vol 32 (5) ◽  
pp. 819-834 ◽  
Author(s):  
Mohammed M. Morsy ◽  
D.H. Chan ◽  
N.R. Morgenstern

An effective stress constitutive model to study the problem numerically of creep in the field is presented. A double-yield surface model for the stress–strain–time behaviour of wet clay is described. The model adopts the concept of separating the total deformation into immediate and delayed components. The yield surfaces employed are the modified Cam-clay ellipsoid and the Von Mises cylinder inscribed in the ellipsoid. The proposed numerical scheme incorporates the pore pressure based on field observations into a finite element analysis. An interpolation technique is used to determine the pore pressure at every element. A field example is presented to illustrate the interpolation technique procedure. The scheme not only avoids the complexity of making predictions of pore-water pressure, but also allows the analysis to be carried out in terms of effective stresses based on the actual observed pore pressure. Two stress integration algorithms based on the implicit calculation of plastic strain are implemented and tested for the double-yield surface model. A numerical simulation of stress-controlled drained creep tests confirms the numerical procedure. Key words : constitutive equations, creep, finite element, stress integration algorithms, effective stress approach, pore-water pressure.


Sign in / Sign up

Export Citation Format

Share Document