scholarly journals Leakage through a hole in a geomembrane beneath a fine-grained tailings

Author(s):  
Alan (Yung-Chin) Chou ◽  
Richard W.I. Brachman ◽  
R. Kerry Rowe

Leakage through a 10-mm-diameter hole in a geomembrane beneath fine-grained tailings is examined for a range of pore pressures and effective stresses. Leakage was measured in an experiment with coupled physical and hydraulic conditions to simulate the effective stresses and flow conditions near the hole. The leakage rate was at little as 0.16 L/day with 200 kPa pore pressure (10-30 kPa effective stresses) and increased only to 0.46 L/day with 800 kPa pore pressure (200 kPa effective stress). Seepage analysis of the experiment and local measurements of permeability from small samples extracted after the experiment indicate that the tailings hydraulic conductivity controlling flow was 3–6 x10-9 m/s. Only a subtle decrease in hydraulic conductivity (less than 2 times) near the hole was found. No evidence of seepage induced migration of fines within the tailings was found. Calculations with the parameters deduced from the experiment show that leakage from a tailings storage facilities containing fine-grained tailings can be limited to 1-2 L/ha/day with a geomembrane liner, even when containing up to five 10-mm-diameter holes per hectare, as opposed to an unlined facility with 3 to 4 orders of magnitude more leakage.

2017 ◽  
Vol 54 (2) ◽  
pp. 147-157 ◽  
Author(s):  
R.W.I. Brachman ◽  
P. Joshi ◽  
R.K. Rowe

The design and performance of a new laboratory apparatus for measuring leakage through geomembrane holes beneath mine tailings is presented. Finite element seepage analysis shows a negligible effect of the lateral boundary on leakage through the geomembrane hole and that the laboratory apparatus provides an excellent idealization of the deep burial conditions expected in the field. Results from four experiments are then reported to demonstrate the effectiveness of the new apparatus and gain insight on the effect of having a low permeable layer on top of the geomembrane on leakage, as may be expected for containment applications involving mine tailings. Two of the experiments simulated having fine grained tailings above the geomembrane (containing a 10 mm diameter hole) in a deep tailings storage facility with applied vertical and pore pressures of 3000 and 1500 kPa. Leakage through the hole with low permeable layer on top of the geomembrane was found to be two to four times smaller than the leakage from two other experiments with a very high permeable layer above the geomembrane (i.e., much more like a solid waste landfill configuration).


2019 ◽  
Author(s):  
Colin Vize ◽  
Katherine Collison ◽  
Donald Lynam ◽  
Josh Miller

Objective: Partialing procedures are frequently used in psychological research. The present study sought to further explore the consequences of partialing, focusing on the replicability of partialing-based results. Method: We used popular measures of the Dark Triad (DT; Machiavellianism, narcissism, and psychopathy) to explore the replicability of partialing procedures. We examined whether the residual content of popular DT scales are similar to the residual content of DT scales derived from separate samples based on relations with individual items from the IPIP-NEO-120, allowing for a fine-grained analysis of residual variable content. Results: Profiles were compared using three sample sizes (Small N=156-157, Moderate N = 313-314, Large N = 627-628) randomly drawn from a large MTurk sample (N = 1,255). There was low convergence among original/residual DT scales within samples. Additionally, results showed the content of residual Dirty Dozen scales was not similar across samples. Similar results were found for Short Dark Triad-Machiavellianism, but only in the moderate and small samples. Conclusion: The results indicate that there are important issues that arise when using partialing procedures, including replicability issues surrounding residual variables. Reasons for the observed results are discussed and further research examining the replicability of residual-based results is recommended.


1999 ◽  
Vol 30 (4-5) ◽  
pp. 333-360 ◽  
Author(s):  
Larry McKay ◽  
Johnny Fredericia ◽  
Melissa Lenczewski ◽  
Jørn Morthorst ◽  
Knud Erik S. Klint

A field experiment shows that rapid downward migration of solutes and microorganisms can occur in a fractured till. A solute tracer, chloride, and a bacteriophage tracer, PRD-1, were added to groundwater and allowed to infiltrate downwards over a 4 × 4 m area. Chloride was detected in horizontal filters at 2.0 m depth within 3-40 days of the start of the tracer test, and PRD-1 was detected in the same filters within 0.27 - 27 days. At 2.8 m depth chloride appeared in all the filters, but PRD-1 appeared in only about one-third of the filters. At 4.0 m depth chloride appeared in about one-third of the filters and trace amounts of PRD-1 were detected in only 2 of the 36 filters. Transport rates and peak tracer concentrations decreased with depth, but at each depth there was a high degree of variability. The transport data is generally consistent with expectations based on hydraulic conductivity measurements and on the observed density of fractures and biopores, both of which decrease with depth. Transport of chloride was apparently retarded by diffusion into the fine-grained matrix between fractures, but the rapid transport of PRD-1, with little dispersion, indicates that it was transported mainly through the fractures.


2020 ◽  
Vol 224 (3) ◽  
pp. 1523-1539
Author(s):  
Lisa Winhausen ◽  
Alexandra Amann-Hildenbrand ◽  
Reinhard Fink ◽  
Mohammadreza Jalali ◽  
Kavan Khaledi ◽  
...  

SUMMARY A comprehensive characterization of clay shale behavior requires quantifying both geomechanical and hydromechanical characteristics. This paper presents a comparative laboratory study of different methods to determine the water permeability of saturated Opalinus Clay: (i) pore pressure oscillation, (ii) pressure pulse decay and (iii) pore pressure equilibration. Based on a comprehensive data set obtained on one sample under well-defined temperature and isostatic effective stress conditions, we discuss the sensitivity of permeability and storativity on the experimental boundary conditions (oscillation frequency, pore pressure amplitudes and effective stress). The results show that permeability coefficients obtained by all three methods differ less than 15 per cent at a constant effective stress of 24 MPa (kmean = 6.6E-21 to 7.5E-21 m2). The pore pressure transmission technique tends towards lower permeability coefficients, whereas the pulse decay and pressure oscillation techniques result in slightly higher values. The discrepancies are considered minor and experimental times of the techniques are similar in the range of 1–2 d for this sample. We found that permeability coefficients determined by the pore pressure oscillation technique increase with higher frequencies, that is oscillation periods shorter than 2 hr. No dependence is found for the applied pressure amplitudes (5, 10 and 25 per cent of the mean pore pressure). By means of experimental handling and data density, the pore pressure oscillation technique appears to be the most efficient. Data can be recorded continuously over a user-defined period of time and yield information on both, permeability and storativity. Furthermore, effective stress conditions can be held constant during the test and pressure equilibration prior to testing is not necessary. Electron microscopic imaging of ion-beam polished surfaces before and after testing suggests that testing at effective stresses higher than in situ did not lead to pore significant collapse or other irreversible damage in the samples. The study also shows that unloading during the experiment did not result in a permeability increase, which is associated to the persistent closure of microcracks at effective stresses between 24 and 6 MPa.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Adam Soule ◽  
Michael Zoeller ◽  
Carolyn Parcheta

AbstractHawaiian and other ocean island lava flows that reach the coastline can deposit significant volumes of lava in submarine deltas. The catastrophic collapse of these deltas represents one of the most significant, but least predictable, volcanic hazards at ocean islands. The volume of lava deposited below sea level in delta-forming eruptions and the mechanisms of delta construction and destruction are rarely documented. Here, we report on bathymetric surveys and ROV observations following the Kīlauea 2018 eruption that, along with a comparison to the deltas formed at Pu‘u ‘Ō‘ō over the past decade, provide new insight into delta formation. Bathymetric differencing reveals that the 2018 deltas contain more than half of the total volume of lava erupted. In addition, we find that the 2018 deltas are comprised largely of coarse-grained volcanic breccias and intact lava flows, which contrast with those at Pu‘u ‘Ō‘ō that contain a large fraction of fine-grained hyaloclastite. We attribute this difference to less efficient fragmentation of the 2018 ‘a‘ā flows leading to fragmentation by collapse rather than hydrovolcanic explosion. We suggest a mechanistic model where the characteristic grain size influences the form and stability of the delta with fine grain size deltas (Pu‘u ‘Ō‘ō) experiencing larger landslides with greater run-out supported by increased pore pressure and with coarse grain size deltas (Kīlauea 2018) experiencing smaller landslides that quickly stop as the pore pressure rapidly dissipates. This difference, if validated for other lava deltas, would provide a means to assess potential delta stability in future eruptions.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 351-356
Author(s):  
C. Dohse ◽  
H. Eckstädt

At the Institute of Land Reclamation, Hydrology and Sanitary Engineering of the University at Rostock the pressure and flow ratios are examined within a measuring section in the pressure dewatering system on the Darfl peninsula. The objective of the research project is the knowledge upgrade about the highly unsteady hydraulic conditions in a pressure sewer system. This paper firstly presents the method and the dimensioning of pressure dewatering systems, which can be done using either the peak effluent method or the statistical method; the examination program will be explained. The examination includes pressure difference measuring with two pressure meters and flow data measuring via magnetic-inductive flow meters. Additionally the pump running times of 15 pumping stations, as well as the compressor action of the pressure pipe rinsing station are continuously and temporarily recorded and saved. Finally the measuring results which provide initial information about the pressure and flow conditions in a pressure dewatering system will be presented. The effects of the rinsing, the low pressure differences, the air cushions, the seasonal differences as well as the daily development graphs of the wastewater production are all clearly visible.


Sign in / Sign up

Export Citation Format

Share Document