Calibration of resistance factors for bearing resistance design of shallow foundations under seismic and wind loading

Author(s):  
Pengpeng He ◽  
Gordon A. Fenton ◽  
D.V. Griffiths

Although the geotechnical resistance 19 factors at ultimate limit state used for dynamic loading conditions should be different from those for static loading conditions, most current structural and geotechnical design codes do not specifically provide dynamic resistance factors. In this paper, the ultimate limit state reliability analysis of individual shallow foundations for drained and undrained soil conditions under seismic (pseudo-dynamic) and wind loads using the Random Finite Element Method is carried out using the provisions of the National Building Code of Canada. The geotechnical resistance factors required to achieve target maximum lifetime failure probabilities are estimated for a few major Canadian cities. The results indicate that the failure probability for drained soil conditions is slightly greater than that for undrained soil conditions. In addition, the results suggest that the dynamic resistance factors for foundation bearing capacity design at ULS are lower than those for static foundation design specified by the code. The current analysis can be used to guide the calibration of these geotechnical resistance factors.

2021 ◽  
Author(s):  
Alexandre P. R. P. Almeida

The design practice of micropiles in Ontario soils under the ultimate limit state was improved through both statistical and reliability analyses of a database of 40 micropile load tests. Micropile design is extremely dependent on engineering experience and judgement due to the lack of an accurate estimation of the bond strength. The FHWA manual of micropiles only provides wide ranges of bond strength in different ground conditions. Micropile load tests were conducted by Keller Foundations Ltd and collected for this study. From a statistical analysis, Fuller and Hoy’s method was selected as the best method to estimate the failure load from non-failed tests. Adjusted parameters were given to predict the bond strength of micropiles. A method was proposed to estimate the contributions from the cased length and the tip to the total resistance. In the end, a reliability analysis was conducted and the resistance factors were recalibrated.


2011 ◽  
Vol 48 (2) ◽  
pp. 265-279 ◽  
Author(s):  
Gordon A. Fenton ◽  
D. V. Griffiths ◽  
Olaide O. Ojomo

The reliability-based design of shallow foundations is generally implemented via a load and resistance factor design methodology embedded in a limit state design framework. For any particular limit state, the design proceeds by ensuring that the factored resistance equals or exceeds the factored load effects. Load and resistance factors are determined to ensure that the resulting design is sufficiently safe. Load factors are typically prescribed in structural codes and take into account load uncertainty. Factors applied to resistance depend on both uncertainty in the resistance (accounted for by a resistance factor) and desired target reliability (accounted for by a newly introduced consequence factor). This paper concentrates on how the consequence factor can be defined and specified to adjust the target reliability of a shallow foundation designed to resist bearing capacity failure.


2017 ◽  
Vol 54 (12) ◽  
pp. 1693-1703 ◽  
Author(s):  
Seth C. Reddy ◽  
Armin W. Stuedlein

The use of augered cast-in-place (ACIP) piles for transportation infrastructure requires an appropriate reliability-based design (RBD) procedure. In an effort to improve the accuracy of an existing design model and calibrate appropriate resistance factors, this study presents a significantly revised RBD methodology for estimating the shaft and toe bearing capacity of ACIP piles using a large database consisting of static loading tests in predominately granular soils. The proposed design models are unbiased, as opposed to those currently recommended. Based on the reasonable assumption that a finite lower-bound resistance limit exists, lower-bound design lines are developed for shaft and toe bearing resistance by applying a constant ratio to the proposed design models. Resistance factors are calibrated at the strength or ultimate limit state (ULS) for ACIP piles loaded in compression and tension for two commonly used target probabilities of failure with and without lower-bound limits. For piles loaded in compression, separate resistance factors are calibrated for the proposed shaft and toe bearing resistance models. The inclusion of a lower-bound limit for piles loaded in tension results in a 24%–50% increase in the calibrated resistance factor. For piles loaded in compression, the application of a lower-bound limit results in a 20%–150% increase in the calibrated resistance factor, and represents a significant increase in useable pile capacity. Although the impact of a lower-bound limit on resistance factor calibration is directly dependent on the degree of uncertainty in the distribution of resistance, this effect is outweighed by the type of distribution selected (i.e., normal, lognormal) at more stringent target probabilities of failure due to differences in distribution shape at the location of the lower-bound limit. A companion paper explores the use of the revised ULS model in a reliability-based serviceability limit state design framework.


2011 ◽  
Vol 48 (11) ◽  
pp. 1729-1741 ◽  
Author(s):  
Mehrangiz Naghibi ◽  
Gordon A. Fenton

This paper investigates the ultimate limit state load and resistance factor design (LRFD) of deep foundations founded within purely cohesive soils. The geotechnical resistance factors required to produce deep foundation designs having a maximum acceptable failure probability are estimated as a function of site understanding and failure consequence. The probability theory developed in this paper, used to determine the resistance factors, is verified by a two-dimensional random field Monte Carlo simulation of a spatially variable cohesive soil. The agreement between theory and simulation is found to be very good, and the theory is then used to derive the required geotechnical resistance factors. The results presented in this paper can be used to complement current ultimate limit state design code calibration efforts for deep foundations in cohesive soils.


2021 ◽  
Author(s):  
Alexandre P. R. P. Almeida

The design practice of micropiles in Ontario soils under the ultimate limit state was improved through both statistical and reliability analyses of a database of 40 micropile load tests. Micropile design is extremely dependent on engineering experience and judgement due to the lack of an accurate estimation of the bond strength. The FHWA manual of micropiles only provides wide ranges of bond strength in different ground conditions. Micropile load tests were conducted by Keller Foundations Ltd and collected for this study. From a statistical analysis, Fuller and Hoy’s method was selected as the best method to estimate the failure load from non-failed tests. Adjusted parameters were given to predict the bond strength of micropiles. A method was proposed to estimate the contributions from the cased length and the tip to the total resistance. In the end, a reliability analysis was conducted and the resistance factors were recalibrated.


2011 ◽  
Vol 48 (11) ◽  
pp. 1742-1756 ◽  
Author(s):  
Gordon A. Fenton ◽  
Mehrangiz Naghibi

This paper investigates the probabilistic nature of ultimate limit state failures of deep foundations in purely frictional soils (e.g., sands). In so doing, the theory required to predict both the probability of ultimate limit state failure and the resistance factors needed to avoid this limit state are proposed. The proposed resistance factors are functions of site understanding and failure consequence, and the theory leading to these resistance factors is validated via Monte Carlo simulation of a two-dimensional spatially variable random field. In both the theory and the simulation, a pile is assumed to be placed vertically at a certain position in the soil mass, and the soil is sampled at various distances from the pile to come up with characteristic soil properties (namely friction angle) for use in the pile design. Agreement between theory and simulation is found to be very good. The theoretical model is then employed to determine upper bound geotechnical resistance factors, which can be used to complement current ultimate limit state design code calibration efforts. An example of such a calibration is presented.


2018 ◽  
Vol 55 (6) ◽  
pp. 829-838 ◽  
Author(s):  
A. Gajo ◽  
C.C. Smith

Conventional ultimate limit state (ULS) shallow foundation design is typically based on a simplified analysis that fails to consider the possible existence of a combined structural and geotechnical failure, which is shown here to significantly affect the limit load. Neglecting this occurrence may lead to unsafe design, whereas a full analysis can be beneficial for the dimensioning. With the emphasis on separate serviceability limit state and ULS design in modern design codes such as Eurocode 7 (EN 1997-1, 2004 edition), this paper explores unsafe loading scenarios and the benefits to be gained from a rigorous ULS design based on combined failure. For the sake of simplicity, a long foundation slab subjected to three different loading conditions is analysed using elastic, elasto-plastic, and rigid-plastic methods, and the results compared for a range of foundation strengths and stiffnesses. It is found that the limit load may be significantly influenced by plastic hinges in the structure and for each load condition it is possible to derive a curve relating ultimate load to plastic bending moment representing the ultimate limit state of the foundation.


Sign in / Sign up

Export Citation Format

Share Document