Genetic and phenotypic associations of type traits and body condition score with dry matter intake, milk yield, and number of breedings in first lactation Canadian Holstein cows

2016 ◽  
Vol 96 (3) ◽  
pp. 434-447 ◽  
Author(s):  
G. Bilal ◽  
R.I. Cue ◽  
J.F. Hayes

The objective of the present study was to estimate genetic parameters of milk yield (MY), intake traits, type traits, body condition score (BCS), and number of breedings (NOB) in first lactation Canadian Holsteins with a focus on the possibility of using type traits as an indicator of feed intake. Data were obtained from the Canadian Dairy Network and Valacta. A mixed linear model was fitted under REML for the statistical analysis. The multivariate (five traits) model included the fixed effects of age at calving, stage of lactation, and herd-round-classifier for type traits; age at calving, stage of lactation, and herd–year–season of calving (HYS) for BCS; age at calving and HYS for MY, feed intake, and NOB. Animal and residual effects were fitted as random effects for all traits. Estimates of heritabilities for MY, dry matter intake (DMI), angularity, body depth, stature, dairy strength, final score, BCS, and NOB were 0.41, 0.13, 0.24, 0.30, 0.50, 0.30, 0.22, 0.20, and 0.02, respectively. Genetic correlations between type traits and DMI ranged from 0.16 to 0.60. Results indicate that type traits appear to have the potential to predict DMI as a combination/index of two or more traits.

2020 ◽  
Vol 49 (1) ◽  
pp. 6-14
Author(s):  
Deise Aline Knob ◽  
Armin Manfred Scholz ◽  
Roberto Kappes ◽  
Wagner Bianchin Rodrigues ◽  
Dileta Regina Moro Alessio ◽  
...  

2008 ◽  
Vol 91 (8) ◽  
pp. 3201-3210 ◽  
Author(s):  
J.K. Toshniwal ◽  
C.D. Dechow ◽  
B.G. Cassell ◽  
J.A.D.R.N. Appuhamy ◽  
G.A. Varga

2015 ◽  
Vol 93 (4) ◽  
pp. 1850-1858 ◽  
Author(s):  
G. Bifulco ◽  
V. Veneziano ◽  
R. Cimmino ◽  
L. Esposito ◽  
L. Auletta ◽  
...  

2019 ◽  
Author(s):  
Yannick Le Cozler ◽  
Julien Jurquet ◽  
Nicolas. Bedere

AbstractThe objective of this study was to investigate effects of feeding-rearing programs that aim for first calving at 20-27 months (mo) of age on growth, reproduction and production performance of Holstein cows at nulliparous and primiparous stages. We hypothesised that, in a seasonal autumn-calving strategy, heifers born late in the season could catch up to the growth of heifers born earlier and be inseminated during the same period, at a body weight (BW) of at least 370 kg. This approach would result in first calving age at 21-22 mo of age without impairing their later performance. To test this hypothesis, we studied 217 heifers over 3 years. They were split into three treatment groups: control feeding (SD), an intensive-plane diet (ID1) from birth to 6 mo of age or an intensive-plane diet from birth to one year of age. Heifers in groups SD and ID1 were born from September until the end of November, while those in ID2 were born later. The present study showed that late-born heifers (ID2) could catch up with the growth of the others due to the feeding treatment, although they were still 42 kg lighter than the SD and ID1 heifers at first calving. No difference in reproductive performance was observed among groups. Once primiparous, the cows reared with the ID2 treatment tended to produce less milk than SD and ID1 cows (ca. 400 kg less on a 305 d basis throughout lactation), and no differences in milk composition, feed intake, body condition score or BW were observed among groups. Age at first service (AFS) was classified a posteriori into three classes: 12.5 (AFS12.5), 14.0 (AFS14.0) and 15.5 mo (AFS15.5) of age. Heifers in AFS12.5 grew faster than those in AFS14.0 and AFS15.5. Once primiparous, the AFS12.5 cows tended to produce less milk at peak than AFS14.0 and AFS15.5 cows (ca. 1.5 kg/d less) although no difference in total milk yield during lactation was observed. No differences in milk composition, feed intake, body condition score or BW were observed among groups. These results support the conclusion that the feeding treatment can enable late-born heifers to catch up to the growth of heifers born earlier in the season. This strategy results in an earlier first calving that does not impair their reproductive performance but does decrease milk yield slightly during first lactation. Future studies should investigate long-term effects of this strategy.


Author(s):  
R.F. Butterwick ◽  
T.E.C. Weekes ◽  
P. Rowlinson ◽  
D.S. Parker ◽  
D.G. Armstrong

The objectives of the trial were to investigate the effects of bovine somatotrophin (BST) from either week 2 or week 10 post-partum on the yields of milk, milk components, body weight, body condition, feed intake, health and reproductive status of dairy cows over a second consecutive lactation. The results from the heifer lactation have been reported previously (Butterwick et al. 1988).17 Friesian dairy cows in their second lactation were continued on the same treatment as in their heifer lactation: daily subcutaneous injection of recombinantly derived bovine somatotrophin (BST;25mg/d) from either week 2 (BST2;n=6) or week 10 (BSTl0;n=5) post-partum, or injection of a buffer solution from week 2 of lactation (C;n=6). Treatments continued until week 42 of lactation or until 60 days prior to predicted calving date, if this occurred before week 42 of lactation. Initially cows were housed in cubicles and fed ad libitum through Calan doors, on a diet consisting of concentrate and grass silage (Table 1) on a 60:40 dry matter ratio. After day 110 of lactation cows were turned out to pasture but continued to receive concentrates according to milk yield and body condition score. Milk yield and feed intake were recorded daily, milk composition, body weight and body condition score were recorded twice weekly. Health and reproductive status were monitored over the lactation.


Sign in / Sign up

Export Citation Format

Share Document