Near-band-gap luminescence from TiO2 nanograss–nanotube hierarchical membranes

2015 ◽  
Vol 93 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Lijia Liu ◽  
Jun Li ◽  
Tsun-Kong Sham

Freestanding TiO2 nanograss–nanotube hierarchical membranes are synthesized from a Ti metal foil by electrochemical anodization. It is found that the two nanostructures exhibit different luminescence properties, which are also affected by the crystal phases upon phase transformation. An unusual near-UV luminescence is observed from the amorphous nanograss, which is found to be excitation element specific. The amorphous nanotube shows no luminescence. Upon calcination, both nanograss and nanotubes are crystalized into the anatase phase with some rutile phase present, and both structures emit visible green luminescence at slightly different energies. The luminescence mechanism is explored using UV–vis spectroscopy, X-ray absorption near-edge structures (XANES), and X-ray excited optical luminescence (XEOL), and its implications are presented.

2013 ◽  
Vol 24 ◽  
pp. 168-175
Author(s):  
Kirit S. Siddhapara ◽  
D.V. Shah

Nanocrystalline Cobalt-doped TiO2was prepared by Sol-Gel technique, followed by freeze-drying treatment at-30°C temperature for 12hrs. The obtained Gel was thermally treated at 200,400,600, 800°C. 1%, 2% and 4% Cobalt doped TiO2nanopowder has been prepared X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), was used to study its structural properties. The XRD pattern shows the coexistence of anatase phase and rutile phase. Thermal gravimetric analysis shows Cobalt concentration affects thermal decomposition. UV-Vis Spectroscopy, Photo luminescence (PL), was used to study its Optical properties. Optical Bandgap were calculated with the incorporation of different concentration of cobalt. UV-Visible spectroscopy show variation in band gap for the sample treated at different temperature for same concentration. All Cobalt doped TiO2nanostructures shows an appearance of Red shift relative to the bulk TiO2. The determination of magnetic properties was also carried out by Vibrating Sample Magnetometer.


2015 ◽  
Vol 6 ◽  
pp. 605-616 ◽  
Author(s):  
Desiré M De los Santos ◽  
Javier Navas ◽  
Teresa Aguilar ◽  
Antonio Sánchez-Coronilla ◽  
Concha Fernández-Lorenzo ◽  
...  

Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV–vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm3+. ICP–AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm3+ was confirmed by X-ray photoelectron spectroscopy and UV–vis spectroscopy: the incorporation of Tm3+ was confirmed by the generation of new absorption bands that could be assigned to Tm3+ transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Billy N. Cardoso ◽  
Emerson C. Kohlrausch ◽  
Marina T. Laranjo ◽  
Edilson V. Benvenutti ◽  
Naira M. Balzaretti ◽  
...  

TiO2/SiO2 nanoparticles with 3, 5, and 10 molar percent of silica, were synthesized by hydrothermal method and characterized by SEM, TEM, N2 adsorption-desorption isotherms, X-ray diffraction, and Raman and UV-Vis spectroscopy. While pristine TiO2 thermally treated at 500°C presents a surface area of 36 m2 g-1 (±10 m2 g-1), TiO2/SiO2 containing 3, 5, and 10 molar percent of silica present surface areas of 93, 124, and 150 m2 g-1 (±10 m2 g-1), respectively. SiO2 is found to form very small amorphous domains well dispersed in the TiO2 matrix. X-ray diffraction and Raman spectroscopy data show that anatase-to-rutile phase transition temperature is delayed by the presence of SiO2, enabling single-anatase phase photoanodes for DSSCs. According to the I×V measurements, photoanodes with 3% of SiO2 result in improved efficiency, which is mainly related to increased surface area and dye loading. In addition, the results suggest a gain in photocurrent related to the passivation of defects by SiO2.


2009 ◽  
Vol 1178 ◽  
Author(s):  
Yahya Alivov ◽  
Vladimir Kuryatkov ◽  
Mahesh Pandikunta ◽  
Gautam Rajanna ◽  
Daniel Johnstone ◽  
...  

AbstractIn this work we investigated the structural, electrical, and optical properties of titanium dioxide (TiO2) nanotubes (NTs) formed by electrochemical anodization of Ti metal sheets in NH4F+glycerol electrolyte at different anodization voltages (Va) and acid concentrations. Our results revealed that TiO2 NTs can be grown in a wide range of anodization voltages from 10 V to 240 V. The maximum NH4F acid concentration, at which NTs can be formed, decreases with the anodization voltage, which is 0.7% for Va<60V, and decreases to 0.1% at Va =240 V. Glancing angle X-ray diffraction (GAXRD) experiments show that as-grown amorphous TiO2 transforms to anatase phase after annealing at 400 oC, and further transforms to rutile phase at annealing temperatures above 500 oC. Samples grown in 30-120 voltage range have higher crystal quality as seen from anatase (101) peak intensity and reduced linewidth. The electrical resistivity of the NTs varies with Va concentration and increases by eight orders of magnitude when Va increases from 10 V to 240 V. This is consistent with cathodoluminescense studies which showed improved optical properties for samples grown in this voltage range. Optical properties of samples were also studied by low temperature photoluminescence. Temperature dependent I-V and photo-induced current transient spectroscopy were employed to analyze electrical properties and defect structure on NT samples.


1992 ◽  
Vol 281 ◽  
Author(s):  
T. K. Sham ◽  
D. T. Jiang ◽  
I. Coulthard ◽  
J. W. Lorimer ◽  
X. H. Feng ◽  
...  

ABSTRACTOptical luminescence in porous silicon induced by soft X-ray and vacuum UV excitation with energies in the vicinity of the Si K-edge (1838 eV) and the Si L-edge (99 eV) has been observed. The luminescence has been used, together with total electron yield, to record X-ray absorption fine structure (XAFS) in the near-edge region of both Si edges. The near- edge spectra recorded simultaneously with either luminescence or total electron yield were compared, and the implications of these measurements for the structure of porous silicon are discussed.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Yanbo Shi ◽  
Ian Harvey ◽  
Dominic Campopiano ◽  
Peter J. Sadler

Ferric ion binding proteins (Fbps) transportFeIIIacross the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetatoNbVcomplexes to the Fbp fromNeisseria gonorrhoeaeby UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest thatNbVbinds strongly to Fbp and that a dinuclearNbVcentre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.


1993 ◽  
Vol 32 (S2) ◽  
pp. 223 ◽  
Author(s):  
T. K. Sham ◽  
X.-H. Feng ◽  
D.-T. Jiang ◽  
K. H. Tan ◽  
S. P. Frigo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document