Correlation between the porosity and ultrasonic pulse velocity of recycled aggregate concrete at different saturation levels

2017 ◽  
Vol 44 (11) ◽  
pp. 911-917 ◽  
Author(s):  
Kahina Haddad ◽  
Ourdia Haddad ◽  
Salima Aggoun ◽  
Salah Kaci

In this work, an ultrasonic technique was developed to study the porosity and pore connectivity of recycled aggregate concretes (RACs) and to elucidate the correlations between the ultrasonic pulse velocity (UPV), recycled concrete aggregate (RCA) content, and water-accessible porosity of the resulting concrete. To estimate the changes in the degree of connectivity of the concrete pores with the amount of RCA substituted, the concrete specimens were examined at different saturation levels. The correlations between the amounts of RCA used, the UPV, and the saturation state could be determined. It was observed that the pore connectivity of the concretes increased with the amount of RCA substituted, which, in turn, increased their open porosity. These findings may facilitate the use of UPV for the estimation of open porosities of RACs at different saturation levels.

Author(s):  
Mohammed Khattab ◽  
Samya Hachemi

Concrete containing recycled aggregates have different properties from concrete containing natural aggregates. This work investigates, firstly, the possibility of using recycled refractory bricks (RBA) as coarse aggregate for concrete, and secondly, finds the ideal replacement percentage of natural coarse aggregate (NCA) by RBA. For this, an experimental study was carried out to assess the physical and mechanical properties of concrete produced with the partial and total replacement of NCA by RBA. Two types of RBA from two different sources were used, RBA-1 obtained from the grinding of new refractory bricks and RBA-2 obtained from refractory bricks used in the furnace recovered from the cement plant. For each type of RBA, two concretes with water/cement (w/c) ratios of 0.59 and 0.38 were tested. These concretes were evaluated by density, water porosity, ultrasonic pulse velocity (UPV) and compressive strength, and compared to those obtained on conventional concretes. The results obtained show that concrete can be manufactured using RBA. Concrete containing 20% ​​RBA shows good quality compared with conventional concrete.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


2010 ◽  
Vol 152-153 ◽  
pp. 1-10
Author(s):  
Chung Ming Ho ◽  
Wei Tsung Tsai

The objectives of this paper are to find the compressive strength and ultrasonic pulse velocity (UPV) of recycled concrete with various percentages of natural fine aggregate replaced by Recycled brick fine aggregate (RBFA) as well as the residual strength and residual UPV of recycled concrete subjected to elevated temperatures. Experiment results showed that the compressive strength and UPV decreased as amount of RBFA in concrete increased, the long-term performance of compressive strength and UPV development increased as the RBFA content increased. The residual strength of recycled concrete increased slightly after heating to 300°C and the residual UPV of recycled concrete decreased gradually as the exposed temperature increased beyond 300°C. In the range of 580 -800°C, recycled concrete lost most of its original compressive strength and UPV. After subjected to the temperature of 800°C, compared to plain concrete, recycled concrete with 100% RBFA had a greater discount rate of compressive strength and UPV of the order of 5-15% and 6-10%. Regression analysis results revealed that the residual strength and residual UPV of recycled concrete had a high relevance after elevated temperatures exposure.


2013 ◽  
Vol 811 ◽  
pp. 249-253 ◽  
Author(s):  
Wei Li ◽  
Hai Ying Zhang

Experiments on influence of species of aggregate and mixing method on interfacial zone in recycled aggregate concrete were investigated. SEM observations revealed that a recycle normal-strength concrete aggregate consist of loose and porous interfacial structure, whereas a recycled high performance concrete (HPC) aggregate and a triple mixing (TM) consist mainly of dense hydrates. Various admixtures on ITZ was produced that consumed CH in the pore, modified attached cement mortar. Strength of recycled concrete was explained by interaction between cements paste and recycled aggregate. The result verified that the relatively dense pore structure of the recycled concrete benefit to development of mechanical properties.


2012 ◽  
Vol 174-177 ◽  
pp. 1475-1480 ◽  
Author(s):  
Valeria Corinaldesi ◽  
Giacomo Moriconi

Cracks can reduce the service life of a concrete structure by allowing aggressive agents to penetrate through it in easy ways. Free shrinkage evaluation alone is not enough to determine if cracking can be expected in a structure since concrete creep behaviour, stiffness and toughness also influence the potential for cracking. Consequently, it is rather interesting to perform restrained shrinkage tests, such as the ring test according to ASTM C 1581–04. The testing procedure involves concrete ring specimens restrained by an inner steel ring on which strain gauges are placed to determine the age of cracking, since abrupt changes in the steel strain occur when concrete is cracked. Both the ring test and free shrinkage test should be carried out in the same exposure conditions, 21°C and 50% relative humidity. Moreover, compressive and tensile strengths of concrete were evaluated on cubic specimens at the time of its cracking and up to 28 days of curing. By means of analytical and numerical models of the ring specimen, some useful information on the stress induced in the material and on the tensile creep behaviour of concrete can be extrapolated thus allowing to better interpret the experimental results. This experimental procedure enables to study the influence of concrete mixture composition on the potential for early-age cracking of concrete. In particular, in this work the influence on early-age cracking of recycled-concrete aggregate partially replacing virgin sand was tested.


Author(s):  
Suhail Mushtaq Khan

Recycled aggregates are those crushed cement concrete or asphalt pavement which comes out from the construction debris which is reused in construction. They are made from the reprocessing of materials which have been used in previous constructions. This paper discusses about the study of properties of recycled aggregates from the sources which has already been published. The results are that 100% replacement of natural aggregate by recycled concrete aggregate effect on chloride ions resistance, it plays negative effects on durability of recycled concrete aggregates, and addition of fiber in recycled aggregate concrete mixture gave more effective in the performance of concrete. On experimental study of recycled aggregate, compressive, flexural and split tensile strength of the recycled aggregate were found to be lower than that of the natural aggregate. Use of recycled aggregate in a new concrete production is still limited. Recommendation of introduction of recycled aggregates standard is required for the materials to be used successfully in future. Gaps in literature reviews are also included in this paper.


2020 ◽  
Vol 15 (1) ◽  
pp. 65-78
Author(s):  
Mohammed Abed ◽  
Rita Nemes

Abstract The mechanical and physical properties of the crushed aggregate have been studied. The properties of crushed aggregate, which produced from recycled aggregate concrete is not discussed in the literature yet despite it could be a choice in some circumstances like in case of demolishing the structures that already constructed by recycled aggregate concrete. Twenty-two types of self-compacting high-performance concrete made by coarse natural aggregate and coarse recycle concrete aggregate have been crushed and their properties have been studied. The main findings of the present study that, the Los Angeles index and water absorption of crushed aggregate is affected by the coarse recycled concrete aggregate dosage in its parent concrete, as well as, incorporating cement replacing materials in parent concrete help to enhance the abrasion resistance of crushed aggregate.


Sign in / Sign up

Export Citation Format

Share Document