Analysis of Microstructure of Interfacial Transition Zone (ITZ) in Recycled Aggregate Concrete

2013 ◽  
Vol 811 ◽  
pp. 249-253 ◽  
Author(s):  
Wei Li ◽  
Hai Ying Zhang

Experiments on influence of species of aggregate and mixing method on interfacial zone in recycled aggregate concrete were investigated. SEM observations revealed that a recycle normal-strength concrete aggregate consist of loose and porous interfacial structure, whereas a recycled high performance concrete (HPC) aggregate and a triple mixing (TM) consist mainly of dense hydrates. Various admixtures on ITZ was produced that consumed CH in the pore, modified attached cement mortar. Strength of recycled concrete was explained by interaction between cements paste and recycled aggregate. The result verified that the relatively dense pore structure of the recycled concrete benefit to development of mechanical properties.

2020 ◽  
Vol 15 (1) ◽  
pp. 65-78
Author(s):  
Mohammed Abed ◽  
Rita Nemes

Abstract The mechanical and physical properties of the crushed aggregate have been studied. The properties of crushed aggregate, which produced from recycled aggregate concrete is not discussed in the literature yet despite it could be a choice in some circumstances like in case of demolishing the structures that already constructed by recycled aggregate concrete. Twenty-two types of self-compacting high-performance concrete made by coarse natural aggregate and coarse recycle concrete aggregate have been crushed and their properties have been studied. The main findings of the present study that, the Los Angeles index and water absorption of crushed aggregate is affected by the coarse recycled concrete aggregate dosage in its parent concrete, as well as, incorporating cement replacing materials in parent concrete help to enhance the abrasion resistance of crushed aggregate.


2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1247 ◽  
Author(s):  
Jianhe Xie ◽  
Jianbai Zhao ◽  
Junjie Wang ◽  
Chonghao Wang ◽  
Peiyan Huang ◽  
...  

There is a constant drive for the development of ultra-high-performance concrete using modern green engineering technologies. These concretes have to exhibit enhanced durability and incorporate energy-saving and environment-friendly functions. The object of this work was to develop a green concrete with an improved sulfate resistance. In this new type of concrete, recycled aggregates from construction and demolition (C&D) waste were used as coarse aggregates, and granulated blast furnace slag (GGBS) and fly ash-based geopolymer were used to totally replace the cement in concrete. This study focused on the sulfate resistance of this geopolymer recycled aggregate concrete (GRAC). A series of measurements including compression, X-ray diffraction (XRD), and scanning electron microscopy (SEM) tests were conducted to investigate the physical properties and hydration mechanisms of the GRAC after different exposure cycles in a sulfate environment. The results indicate that the GRAC with a higher content of GGBS had a lower mass loss and a higher residual compressive strength after the sulfate exposure. The proposed GRACs, showing an excellent sulfate resistance, can be used in construction projects in sulfate environments and hence can reduce the need for cement as well as the disposal of C&D wastes.


2020 ◽  
Vol 10 (15) ◽  
pp. 5132
Author(s):  
Muhammad Naveed Zafar ◽  
Muhammad Azhar Saleem ◽  
Jun Xia ◽  
Muhammad Mazhar Saleem

Enhanced quality and reduced on-site construction time are the basic features of prefabricated bridge elements and systems. Prefabricated lightweight bridge decks have already started finding their place in accelerated bridge construction (ABC). Therefore, the development of deck panels using high strength and high performance concrete has become an active area of research. Further optimization in such deck systems is possible using prestressing or replacement of raw materials with sustainable and recyclable materials. This research involves experimental evaluation of six full-depth precast prestressed high strength fiber-reinforced concrete (HSFRC) and six partial-depth sustainable ultra-high performance concrete (sUHPC) composite bridge deck panels. The composite panels comprise UHPC prepared with ground granulated blast furnace slag (GGBS) with the replacement of 30% cement content overlaid by recycled aggregate concrete made with replacement of 30% of coarse aggregates with recycled aggregates. The experimental variables for six HSFRC panels were depth, level of prestressing, and shear reinforcement. The six sUHPC panels were prepared with different shear and flexural reinforcements and sUHPC-normal/recycled aggregate concrete interface. Experimental results exhibit the promise of both systems to serve as an alternative to conventional bridge deck systems.


2011 ◽  
Vol 71-78 ◽  
pp. 4471-4475
Author(s):  
Xiao Xiong Zha ◽  
Kai Zhang

Recycled concrete aggregates have large porosity, large water absorption and high crush index. Mechanical properties of recycled concrete aggregates could be improved by adding activated water instead of ordinary water. On the basis of the experimental studies, this paper analyzes the influences on recycled concrete compression strength when using activated water. There are many different factors such as the kinds and amounts of alkali and the water slag ratio affecting the compressive strength of recycle geopolymer. The results show that activated water has a high enhancement on compressive strength of recycled aggregate concrete, and the highest compressive strength of recycled geopolymer is 57.3MPa.


2020 ◽  
Vol 12 (24) ◽  
pp. 10278
Author(s):  
Nikola Tošić ◽  
Snežana Marinković ◽  
Yahya Kurama

Recycled aggregate concrete (RAC), i.e., concrete produced with recycled concrete aggregate (RCA) has been heavily investigated recently, and the structural design of RAC is entering into design codes. Nonetheless, the service load deflection behavior of RAC remains a challenge due to its larger shrinkage and creep, and lower modulus of elasticity. A novel solution to this challenge is the use of layered concrete, i.e., casting of horizontal layers of different concretes. To investigate the potential benefits and limits of layered concrete, this study contains a numerical parametric assessment of the time-dependent sustained service load deflections and environmental impacts of homogeneous and layered NAC and RAC one-way slabs. Four types of reinforced concrete slabs were considered: homogeneous slabs with 0%, 50% and 100% of coarse RCA (NAC, RAC50 and RAC100, respectively) and layered L-RAC100 slabs with the bottom and top halves consisting of RAC100 and NAC, respectively. In the deflection study, different statical systems, concrete strength classes and relative humidity conditions were investigated. The results showed that the layered L-RAC100 slabs performed as well as, or even better than, the NAC slabs due to the differential shrinkage between the layers. In terms of environmental performance, evaluated using a “cradle-to-gate” Life Cycle Assessment approach, the L-RAC100 slabs also performed as well as, or slightly better than, the NAC slabs. Therefore, layered NAC and RAC slabs can be a potentially advantageous solution from both structural and environmental perspectives.


2020 ◽  
Vol 991 ◽  
pp. 101-108
Author(s):  
Sallehan Ismail ◽  
Mahyuddin Ramli

This paper presents a study that aimed to assess the chloride penetration depth of recycled aggregate concrete (RAC) modified by using treated coarse recycled concrete aggregate (RCA), adding polyolefin (PO) or polypropylene (PP) fibre and comparing with normal concrete. The coupling effects of the treated RCA and fibres on the chloride penetration of RAC were analysed after two different curing regimes (i.e. normal and seawater) and tested at different curing ages (i.e. 90, 180 and 300 days). Results showed that the inclusion of treated coarse RCA can reduce porosity, thereby decreasing the chloride penetration of RAC. However, the coupling effects of treated coarse RCA and fibre, especially on the use of PO fibre, can enhance the results.


2019 ◽  
Vol 25 (3) ◽  
pp. 601-616 ◽  
Author(s):  
Diogo Pedro ◽  
Mafalda Guedes ◽  
Jorge de Brito ◽  
Luís Evangelista

AbstractThe use of concrete-recycled aggregates to produce high-performance concrete is limited by insufficient correlation between resulting microstructure and its influence on mechanical performance reproducibility. This work addresses this issue in a sequential approach: concrete microstructure was systematically analyzed and characterized by scanning electron microscopy and results were correlated with concrete compressive strength and water absorption ability. The influence of replacing natural aggregates (NA) with recycled concrete aggregates (RCA), with different source concrete strength levels, of silica fume (SF) addition and of mixing procedure was tested. The results show that the developed microstructure depends on the concrete composition and is conditioned by the distinct nature of NA, recycled aggregates from high-strength source concrete, and recycled aggregates from low-strength source concrete. SF was only effective at concrete densification when a two-stage mixing approach was used. The highest achieved strength in concrete with 100% incorporation of RCA was 97.3 MPa, comparable to that of conventional high-strength concrete with NA. This shows that incorporation of significant amounts of RCA replacing NA in concrete is not only a realistic approach to current environmental goals, but also a viable route for the production of high-performance concrete.


Sign in / Sign up

Export Citation Format

Share Document