Detrital zircon U–Pb dating of Late Triassic Wenbinshan Formation in southwestern Fujian, South China, and its geological significance

2018 ◽  
Vol 55 (8) ◽  
pp. 980-996 ◽  
Author(s):  
Zhongjie Xu ◽  
Yizhi Lan ◽  
Jintao Kong ◽  
Rihui Cheng ◽  
Liaoliang Wang

Based on research of the petrology, geochemistry, and zircon U–Pb dating of detrital rocks in the Late Triassic Wenbinshan Formation in southwestern Fujian, and comparing the detrital zircon ages of Wenbinshan Formation with those of Late Paleozoic – Early Mesozoic main basins in South China, the sedimentary provenance of the Late Triassic in southwestern Fujian and its implications for changes in basin properties are discussed. The research results demonstrate that there is a major age peak at 222 Ma, two subordinate age peaks at 275 Ma and 1851 Ma, and two minor age peaks at 413 Ma and 2447 Ma in the detrital zircon age spectra of the upper samples (YGP–6) of the Wenbinshan Formation, whereas there are two major age peaks at 229 Ma and 1817 Ma and other minor age peaks 265 Ma 309 Ma, 415 Ma, 1968 Ma, and 2435 Ma in the detrital zircon age spectra of the lower samples (YGP–26) of the Wenbinshan Formation. The upper samples contain fewer old detrital zircons than the lower samples, but the upper and lower samples of Wenbinshan Formation are similar in major age composition, which indicates the main provenances of the upper and lower sediments are very similar. The source rocks are mainly sedimentary rocks and their provenances are derived from a source area of recycled orogenic belt and volcanic arc orogenic belt (acidic island arc). The detrital zircon composition of the Wenbinshan Formation is mainly composed of Paleoproterozoic zircon and Late Paleozoic – Early Mesozoic zircon. In the Paleoproterozoic, sedimentary provenances were mainly derived from the Wuyi Massif and partly from northwestern Fujian-southwestern Zhejiang. As for the period of Late Paleozoic – Early Mesozoic, the provenances of the Wenbinshan Formation were derived from magmatic active belts of the Early Indosinian Epoch of northern South China, eastern South China, and the Indosinian Period of northern South China and coastal areas of eastern South China. The similarities and differences between detrital zircon age peaks of the Wenbinshan Formation in southwestern Fujian and that of the main basins in South China during the period of Late Paleozoic – Early Mesozoic indicate that from eastern coastal areas of South China to the north and interior of South China, the age composition of basin sediments has changed from simple to relatively complex, and from young sediments to older sediments. There are similarities and differences in the detrital zircon compositions of the different basins, which can indicate differences in the nature of the basins.

Geology ◽  
2006 ◽  
Vol 34 (1) ◽  
pp. e107-e108
Author(s):  
A. L. Weislogel ◽  
S. A. Graham ◽  
E. Z. Chang ◽  
J. L. Wooden ◽  
G. E. Gehrels ◽  
...  

2020 ◽  
pp. 1-17
Author(s):  
Bo Hui ◽  
Yunpeng Dong ◽  
Feifei Zhang ◽  
Shengsi Sun ◽  
Shuai He

Abstract The Yangtze Block in South China constitutes an important Precambrian landmass in the present East Asian continent. The Neoproterozoic sedimentary successions of the Hengdan Group in the NW Yangtze Block record essential information for deciphering the Neoproterozoic tectonics along the NW margin. However, its depositional age, provenance and tectonic properties remain uncertain. Here, a combined analysis of detrital zircon U–Pb dating and geochemistry is performed on representative samples from the Hengdan Group. Concordant dating results of samples from the bottom and upper parts constrain the maximum depositional age at c. 720 Ma. Detrital zircon age patterns of samples reveal a uniformly pronounced age peak at c. 915–720 Ma, which is consistent with the magmatic pulses in domains at the NW end of the Yangtze Block. In addition, these samples display left-sloping post-Archaean Australian shale (PAAS)-normalized rare-earth element patterns and variable trace element patterns, resembling sediments accumulated in a basin related to an active continental margin geodynamic setting. Provenance analysis reveals that the main sources featured intermediate to felsic components, which experienced rapid erosion and sedimentation. These integrated new investigations, along with previous compilations, indicate that the Hengdan Group might have been deposited in a fore-arc basin controlled by subduction beneath the Bikou Terrane. Thus, such interpretation further supports proposals for subduction-related tectonics along the western margin of the Yangtze Block during the early Neoproterozoic.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Sofia Laskari ◽  
Konstantinos Soukis ◽  
Stylianos Lozios ◽  
Daniel F. Stockli ◽  
Eirini M. Poulaki ◽  
...  

Detailed mapping and structural observations on the Cycladic Blueschist Unit (CBU) on Iraklia Island integrated with detrital zircon (DZ) U-Pb ages elucidate the Mesozoic pre-subduction and the Cenozoic orogenic evolution. Iraklia tectonostratigraphy includes a heterogeneous Lower Schist Fm., juxtaposed against a Marble Fm. and an overlying Upper Schist Fm. The contact is an extensional ductile-to-brittle-ductile, top-to-N shear zone, kinematically associated with the Oligo-Miocene exhumation. The DZ spectra of the Lower Schist have Gondwanan/peri-Gondwanan provenance signatures and point to Late Triassic Maximum Depositional Ages (MDAs). A quartz-rich schist lens yielded Precambrian DZ ages exclusively and is interpreted as part of the pre-Variscan metasedimentary Cycladic Basement, equivalent to schists of the Ios Island core. The Upper Schist represents a distinctly different stratigraphic package with late Cretaceous MDAs and dominance of Late Paleozoic DZ ages, suggestive of a more internal Pelagonian source. The contrast in the DZ U-Pb record between Lower and Upper Schist likely reflects the difference between a Paleotethyan and Neotethyan geodynamic imprint. The Triassic DZ input from eroded volcanic material is related to the final Paleotethys closure and Pindos/CBU rift basin opening, while late Cretaceous metamorphic/magmatic zircons and ~48–56 Ma zircon rims constrain the onset of Neotethyan convergence and high-pressure subduction metamorphism.


2020 ◽  
Author(s):  
Anh Nong ◽  
Christoph Hauzenberger ◽  
Daniela Gallhofer ◽  
Sang Dinh

<p>Early Mesozoic magmatism in Indochina and its vicinities in Sundaland (SE Asia) has been usually ascribed to be in connection with one of three approximately coeval tectonic regimes: 1) the Indochina-Sibumasu amalgamation leading to the closure of the Paleotethys during the Late Paleozoic – Early Mesozoic forming the Thai-Malaysia tin-bearing granite belt, 2) the Indochina-South China amalgamation along the northern boundary of Indochina closing another branch of the Paleotethys during Late Paleozoic – Triassic times, and 3) the early stage of an active margin with subduction of the Paleo-Pacific plate during Triassic-Jurassic times.</p><p>Scattered granitic plutons (185–210 Ma) located in southern Cambodia and some islands in southernmost Vietnam are distributed along the N-S Rach Gia-Nam Can fault which is a large-scale fault active during the Early Mesozoic. The studied rocks can be distinguished based on petrological features: weakly foliated biotite-rich granite (Hon Khoai Island, SW Vietnam), biotite-tourmaline-bearing granite (Hon Da Bac Island, SW Vietnam), and coarse-grained biotite granite (Tamao, SE Cambodia). The Honkhoai granites are a range of dark to light coloured granites due to a variation in biotite content and display a foliation. They usually contain amphibole, ilmenite, and monazite. The Hondabac granites comprise dark-colored granodiorites and granites with biotite, tourmaline, ilmenite, apatite, fluorite, epidote, and subordinate titanite. The Tamao granites are mainly composed of biotite aggregates with sporadic muscovite and accessory phases such as ilmenite, apatite, and fluorite.</p><p>Zircon U-Pb ages yield 189 ± 1 to 206 ± 2 Ma for the Honkhoai rocks, 192 ± 1 to 202 ± 1 Ma for the Hondabac rocks, and 189 ± 2 Ma for the Tamao rocks. Apparently, these Late Triassic - Early Jurassic granitoids are chronologically consistent with all three tectonic events. However, geographical and geochemical arguments favor a connection to the Thai-Malaysia tin-bearing granites. Similarities include high silica content and predominantly high-K to calc-alkaline affinities. Trace element composition is characterized by enrichments in Cs, Rb, Th, U, and Pb, and depletion in Ba, Sr, Nb, P, and Ti. All analyzed rock samples show (La/Yb)n values of 4.05–17.27 and negative Eu anomalies (Eu/Eu*=0.15–0.65). The whole-rock and biotite chemistry point to an arc-related tectonic setting for the Hondabac rock, while the Honkhoai and Tamao rocks are ambiguous in the tectonic regime but likely close to syn-collision and within-plate field, respectively. Geobarometry of the Honkhoai rocks using the Al-in-amphibole geobarometer yields crystallization pressure up to 3 kbar.</p><p>We conclude that the studied rocks formed during the closure of the Palaeotethys along the western boundary of the Indochina block, particularly similar to the Thai-Malaysia granite belt. Hence, the Sukhothai-Chantaburi Terrane may be extended southeastward as far as to the Hon Khoai Island (Southernmost Vietnam).</p>


Tectonics ◽  
2015 ◽  
Vol 34 (5) ◽  
pp. 986-1008 ◽  
Author(s):  
Lisha Hu ◽  
Peter A. Cawood ◽  
Yuansheng Du ◽  
Jianghai Yang ◽  
Liangxuan Jiao

2001 ◽  
Vol 4 (4) ◽  
pp. 833-835 ◽  
Author(s):  
Akira Yao ◽  
Yoichi Ezaki ◽  
Kiyoko Kuwahara ◽  
Weicheng Hao ◽  
Jianbo Liu

Sign in / Sign up

Export Citation Format

Share Document