scholarly journals Age and tectonic setting of Neoproterozoic granitoid rocks, Antigonish Highlands, Nova Scotia, Canada: Implications for Avalonia in the northern Appalachian orogen

Author(s):  
Chris E White ◽  
Sandra M. Barr ◽  
Michael A. Hamilton ◽  
J. Brendan Murphy

The oldest rocks in the Avalonian Antigonish Highlands of northern mainland Nova Scotia, Canada, are Late Neoproterozoic (> 618 Ma) volcanic and sedimentary rocks of the Georgeville Group intruded by gabbroic/dioritic to granitic plutons. New U-Pb zircon ages presented here for 5 samples from plutons intruded into the James River and/or Keppoch formations of the Georgeville Group have ages ranging from ca. 615 to 604 Ma. They have petrological characteristics of expanded calc-alkalic "Andean-type" suites but are compositionally biased toward evolved high-silica compositions and are interpreted as evolved I-type granites. They were emplaced at shallow depths and some were likely comagmatic with felsic volcanic components of their host rocks. These plutons are younger and show less varied Sm-Nd isotopic compositions than most plutonic rocks formed in the early Ediacaran "main arc phase" elsewhere in Avalonian terranes in the northern Appalachian orogen, although they are similar in age to plutons in southeastern New England and in the Bass River and Jeffers blocks of the Cobequid Highlands, Nova Scotia. The Jeffers block of the Cobequid Highlands appears to be most similar to the Antigonish Highlands but both areas record a Neoproterozoic history less protracted than in other parts of Avalonia.

2016 ◽  
Vol 52 ◽  
pp. 169
Author(s):  
David P West ◽  
Dwight Bradley ◽  
Raymond Coish

The Litchfield pluton is a poorly exposed 7 km2 composite alkalic intrusive complex that cuts previously deformed and metamorphosed Silurian turbidites in south-central Maine.  The pluton includes a variety of alkaline syenites, including the type locality of “litchfieldite”, a coarse-grained cancrinite, sodalite, and lepidomelane bearing nepheline syenite first recognized over 150 years ago and common in many petrologic collections.  A new U-Pb zircon age of 321 ± 2 Ma from the nepheline syenite is interpreted to represent the crystallization age of the plutonic complex.  A new biotite 40Ar/39Ar age of 239 ± 1 Ma from the syenite is similar to previously published mica ages from the surrounding country rocks and dates the time of regional cooling in the area below ~ 300°C.  Whole rock geochemical analyses from rocks of the Litchfield pluton are compatible with strongly alkaline A-type granitoid rocks that formed in a within plate or continental rift tectonic setting.  The age and geochemical characteristics of the alkalic igneous rocks near Litchfield are consistent with a model that invokes the generation of a small volume of alkalic magma beneath south-central Maine during a period of Carboniferous transcurrent tectonism in the northern Appalachian orogen.       


1993 ◽  
Vol 30 (12) ◽  
pp. 2273-2282 ◽  
Author(s):  
J. Brendan Murphy ◽  
Deborah L. MacDonald

The Late Proterozoic (ca. 618–610 Ma) Georgeville Group of northern mainland Nova Scotia lies within the Avalon Composite Terrane and consists of subgreenschist- to greenschist-facies mafic and felsic volcanic rocks overlain by volcaniclastic turbidites that were deposited in an ensialic basin within a rifted volcanic arc. Geochronological data indicate that the volcanic and sedimentary rocks are coeval. The geochemical and isotopic signatures of the sedimentary rocks are attributed to erosion of the coeval Avalonian volcanic rocks that flank the basin and are consistent with synorogenic deposition. There is no evidence of significant chemical contribution from Avalonian basement.Knowledge of the tectonic setting facilitates the testing of published geochemical discriminant diagrams for clastic sedimentary rocks. Discrimination diagrams using ratios such as K2O/Na2O and Al2O3/(CaO + Na2O) give inconclusive results, probably due to elemental mobility during secondary processes. Plots involving MgO, TiO2, and Fe2O3 detect the chemical contribution of mafic detritus, give much tighter clusters of data, and plot between Aleutian- and Cascade-type arc-derived sediments, suggesting a moderate thickness of continental crust beneath the arc.The arc-related signature of the Georgeville sedimentary rocks is clearly recognizable on ternary plots involving inter-element ratios of high field strength elements (e.g., Ti–Y–Zr, Nb–Y–Zr, and Hf–Ta–Th) in which the samples plot as mixing trends between mafic and felsic end members. Diagrams of this type may have widespread application to tectonic discrimination of sedimentary rocks because in most suites these ratios are relatively insensitive to sedimentary and metamorphic processes.


2007 ◽  
Vol 44 (10) ◽  
pp. 1467-1478 ◽  
Author(s):  
Patrick C Moran ◽  
Sandra M Barr ◽  
Chris E White ◽  
Michael A Hamilton

The Seal Island Pluton outcrops only on small islands located on the continental shelf 45 km south of Nova Scotia, although geophysical data indicate that the pluton is part of large granitoid units that cover thousands of square kilometres farther offshore. Based on the island outcrops, the Seal Island Pluton consists of biotite monzogranite and muscovite–biotite monzogranite of uncertain relative age. Metasedimentary xenoliths combined with characteristic magnetic patterns indicate that the pluton intruded the Cambrian–Ordovician Meguma Group. Compared with the biotite monzogranite, the muscovite–biotite monzogranite is higher in SiO2, more peraluminous, and more depleted in heavy rare-earth elements, and also has lower εNd (–1.39 versus +0.82), possibly the result of more contamination by Meguma Group sedimentary rocks. The biotite monzogranite yielded a Late Devonian U–Pb (zircon) age of 362.8 ± 0.7 Ma. Although the relatively minor petrological differences between the two units do not preclude a co-magmatic relationship, the muscovite–biotite monzogranite could be 10–15 Ma older than the biotite monzogranite, based on its petrological similarities to parts of the onshore ca. 376–372 Ma Shelburne and Port Mouton plutons. Comparison with granite samples in offshore drill core indicates that granitoid rocks similar to those exposed on Seal and surrounding islands form part of large plutons farther offshore in the Meguma terrane. The age and petrochemical data from both onshore and offshore plutons indicate that peraluminous granitoid rocks in the Meguma terrane were derived from similar sources over a span of at least 20 million years. Magma genesis may have been related to mantle upwelling and stepping back of the subduction zone to the southeast subsequent to docking of Meguma terrane with adjacent Avalonia.


2002 ◽  
Vol 39 (2) ◽  
pp. 259-277 ◽  
Author(s):  
Lisa A MacDonald ◽  
Sandra M Barr ◽  
Chris E White ◽  
John WF Ketchum

The White Rock Formation in the Yarmouth area of the Meguma terrane of southern Nova Scotia consists mainly of mafic tuffaceous rocks with less abundant mafic flows, epiclastic and clastic sedimentary rocks, and minor intermediate and felsic crystal tuff. It is divided into seven map units that appear to young from west to east, inconsistent with a previously assumed synclinal structure. The White Rock Formation is flanked on both northwest and southeast by mainly the Cambrian to Lower Ordovician Halifax Formation; the western contact is interpreted to be a sheared disconformity, whereas the eastern contact appears to be a major brittle fault and shear zone that juxtaposes different crustal levels. The granitic Brenton Pluton forms a faulted lens within the eastern shear zone. A felsic tuff from the upper part of the White Rock Formation yielded a U–Pb zircon age of 438+3–2 Ma, identical within error to published ages for the Brenton Pluton and felsic volcanic rocks near the base of the White Rock Formation in the Torbrook area of western Nova Scotia. The chemical characteristics of the mafic volcanic rocks and associated mafic intrusions consistently indicate alkalic affinity and a continental within-plate setting. The felsic volcanic rocks and Brenton Pluton have chemical characteristics of within-plate anorogenic granitic rocks, and the pluton is interpreted to be comagmatic with the felsic volcanic rocks. The igneous activity may have occurred in response to extension as the Meguma terrane rifted away from Gondwana in the latest Ordovician to Early Silurian. Epsilon Nd values are similar to those in voluminous Devonian plutonic rocks of the Meguma terrane, and the magmas appear to have been derived from similar sources.


2019 ◽  
Author(s):  
Gregory J. Walsh ◽  
◽  
John N. Aleinikoff ◽  
Robert P. Wintsch ◽  
Robert A. Ayuso
Keyword(s):  

1989 ◽  
Vol 26 (10) ◽  
pp. 2032-2043 ◽  
Author(s):  
Christian V. Pitre ◽  
Jean M. Richardson

The Duck Pond tin prospect is a vein- and strata-bound cassiterite prospect that is located 2 km west of the East Kemptville open-pit tin mine in southwestern Nova Scotia. The host rocks of the Duck Pond prospect are interbedded metawacke and meta-argillite that belong to the transition unit of the Meguma Group. These rocks contain quartz, sericite, chlorite, hematite, rutile, manganese oxides, feldspar, and porphyroblastic garnet, but not detrital cassiterite. The prospect is structurally controlled and contains several cross-cutting vein sets that have alkalic, chloritic, or argillic alteration assemblages. Muscovite is the main indicator mineral for alkalic alteration and occurs in veins that contain anorthoclase or quartz. Cassiterite is associated with chloritic alteration and occurs as subhedral to euhedral grains, acicular needles, and colloform layers in veins in meta-argillite and as strata-bound disseminations in metawacke. Most cassiterite precipitated under externally buffered conditions with respect to oxygen. Fe, Cu, Zn, and As sulphide minerals and quartz were deposited during argillic alteration. Late-stage processes such as recrystallization, sulphidation, and oxidation also occurred. Chalcopyrite is replaced by bornite and covellite; pyrite is replaced by marcasite.Unlike the F-rich East Kemptville deposit, fluorine-rich and tin-sulphide minerals are not present in the Duck Pond prospect. Trace tourmaline, absent at East Kemptville, is found at Duck Pond. However, the source of tin-mineralizing fluids at Duck Pond and East Kemptville was likely the granitic magma of the Davis Lake complex, which also hosts the East Kemptville deposit. From the mineral assemblages and textural relationships, it appears that as the temperature dropped from 425–405 °C to less than 200 °C at Duck Pond, the pH dropped from 5.2 to no lower than 3. Log [Formula: see text] dropped from at least −19 to −43. Log [Formula: see text] rose from < −15 to > −10. Cassiterite precipitated at the higher ends of the temperature and pH ranges and the lower end of the log [Formula: see text] range.


1987 ◽  
Vol 65 (6) ◽  
pp. 1163-1179 ◽  
Author(s):  
David G. Green

Pollen diagrams from sites in southwest Nova Scotia and close to the New Brunswick – Nova Scotia border show that after retreat of the Wisconsin ice sheets, most tree taxa arrived in the extreme southwest of Nova Scotia earlier than anywhere else in the province. For most tree taxa, arrival times at sites in maritime Canada and in northeastern New England are consistent with very early dispersal of individuals along the coastal strip via the exposed coastal shelf and with their entering Nova Scotia from the southwest. These scattered pioneer populations acted as centres for major population expansions, which followed much later in some cases. Local environments, fire, and interspecies competition appear to have been more important than propagule dispersal rates as factors limiting the spread of most taxa.


1999 ◽  
Vol 36 (10) ◽  
pp. 1655-1669 ◽  
Author(s):  
Jacquelyn E Stevens ◽  
J Brendan Murphy ◽  
Fred W Chandler

Geochemical and isotopic data from the clastic rocks of the Namurian Lismore Formation in mainland Nova Scotia identify key episodes of tectonic activity during the development of the Maritimes Basin in Atlantic Canada. The Lismore Formation forms part of the Mabou Group and is an upward-coarsening 2500 m thick fluvial sequence deposited in the Merigomish sub-basin along the southern flank of the Maritimes Basin. Based on stratigraphic evidence, the Lismore Formation can be divided into upper and lower members which reflect variations in depositional environment and paleoclimate. The geochemical and isotopic data may also be subdivided into two groupings that primarily reflect varying contributions from accessory phases, clay minerals, or rock fragments. This subdivision occurs 115 m above the base of the upper member. The data from the lower grouping (group A) show an important contribution from underlying Silurian rocks, with a relatively minor contribution from Late Devonian granitoid rocks from the adjacent Cobequid Highlands and possibly metasedimentary rocks from the Meguma Terrane to the south. The data from the upper grouping (group B) reveal a more important contribution from the Cobequid Highlands granitoid rocks. This variation in geochemistry is thought to constrain the age of renewed motion and uplift along the faults along the southern flank of the Maritimes Basin and, more generally, suggests that geochemical and isotopic data of continental clastic rocks may help constrain the age of tectonic events that influence deposition of basin-fill rocks.


Sign in / Sign up

Export Citation Format

Share Document