Theropod guild structure and the tyrannosaurid niche assimilation hypothesis: implications for predatory dinosaur macroecology and ontogeny in later Late Cretaceous Asiamerica

2021 ◽  
pp. 1-18
Author(s):  
Thomas R. Holtz

Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show greater taxonomic diversity among larger (>50 kg) theropod taxa than communities of the Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia. The large carnivore guilds in Asiamerican assemblages are monopolized by tyrannosaurids, with adult medium-sized (50–500 kg) predators rare or absent. In contrast, various clades of theropods are found to occupy these body sizes in earlier faunas, including early tyrannosauroids. Assemblages with “missing middle-sized” predators are not found to have correspondingly sparser diversity of potential prey species recorded in these same faunas. The “missing middle-sized” niches in the theropod guilds of Late Cretaceous Laramidia and Asia may have been assimilated by juvenile and subadults of tyrannosaurid species, functionally distinct from their adult ecomorphologies. It is speculated that if tyrannosaurids assimilated the niches previously occupied by mid-sized theropod predators, we would expect the evolution of distinct transitions in morphology and possibly the delay of the achievement of somatic maturity in species of this taxon.

2010 ◽  
Vol 84 (6) ◽  
pp. 1071-1081 ◽  
Author(s):  
Timothy S. Myers

Remains of a pteranodontid pterosaur are recorded in the basal Austin Group of North Texas. The specimen described here comprises a partial left wing and strongly resemblesPteranodonalthough diagnostic features of that genus are lacking. With an estimated early Coniacian age, this specimen represents the earliest occurrence of the Pteranodontidae in North America and the second earliest occurrence worldwide, predated only byOrnithostomafrom the Cambridge Greensand of England. Pterosaur material recovered from the Eagle Ford and Austin groups of Texas records an early Late Cretaceous change in the composition of North American pterosaur communities between the late Cenomanian and the early Coniacian. This faunal transition appears to be primarily a decrease in morphological disparity rather than a significant reduction in taxonomic diversity. However, the lack of Early CretaceousLagerstättenin North America may produce underestimates of true pterosaur richness during this interval, thereby obscuring a subsequent drop in diversity.


2017 ◽  
Vol 67 (3) ◽  
pp. 393-403 ◽  
Author(s):  
Daniel Madzia ◽  
Marcin Machalski

AbstractBrachauchenine pliosaurids were a cosmopolitan clade of macropredatory plesiosaurs that are considered to represent the only pliosaurid lineage that survived the faunal turnover of marine amniotes during the Jurassic- Cretaceous transition. However, the European record of the Early to early Late Cretaceous brachauchenines is largely limited to isolated tooth crowns, most of which have been attributed to the classic Cretaceous taxon Polyptychodon. Nevertheless, the original material of P. interruptus, the type species of Polyptychodon, was recently reappraised and found undiagnostic. Here, we describe a collection of twelve pliosaurid teeth from the upper Albian-middle Cenomanian interval of the condensed, phosphorite-bearing Cretaceous succession at Annopol, Poland. Eleven of the studied tooth crowns, from the Albian and Cenomanian strata, fall within the range of the morphological variability observed in the original material of P. interruptus from the Cretaceous of England. One tooth crown from the middle Cenomanian is characterized by a gently subtrihedral cross-section. Similar morphology has so far been described only for pliosaurid teeth from the Late Jurassic and Early Cretaceous. Even though it remains impossible to precisely settle the taxonomic distinctions, the studied material is considered to be taxonomically heterogeneous.


Facies ◽  
2021 ◽  
Vol 67 (3) ◽  
Author(s):  
Markus Wilmsen ◽  
Udita Bansal

AbstractCenomanian strata of the Elbtal Group (Saxony, eastern Germany) reflect a major global sea-level rise and contain, in certain intervals, a green authigenic clay mineral in abundance. Based on the integrated study of five new core sections, the environmental background and spatio-temporal patterns of these glauconitic strata are reconstructed and some general preconditions allegedly needed for glaucony formation are critically questioned. XRD analyses of green grains extracted from selected samples confirm their glauconitic mineralogy. Based on field observations as well as on the careful evaluation of litho- and microfacies, 12 glauconitc facies types (GFTs), broadly reflecting a proximal–distal gradient, have been identified, containing granular and matrix glaucony of exclusively intrasequential origin. When observed in stratigraphic succession, GFT-1 to GFT-12 commonly occur superimposed in transgressive cycles starting with the glauconitic basal conglomerates, followed up-section by glauconitic sandstones, sandy glauconitites, fine-grained, bioturbated, argillaceous and/or marly glauconitic sandstones; glauconitic argillaceous marls, glauconitic marlstones, and glauconitic calcareous nodules continue the retrogradational fining-upward trend. The vertical facies succession with upwards decreasing glaucony content demonstrates that the center of production and deposition of glaucony in the Cenomanian of Saxony was the nearshore zone. This time-transgressive glaucony depocenter tracks the regional onlap patterns of the Elbtal Group, shifting southeastwards during the Cenomanian 2nd-order sea-level rise. The substantial development of glaucony in the thick (60 m) uppermost Cenomanian Pennrich Formation, reflecting a tidal, shallow-marine, nearshore siliciclastic depositional system and temporally corresponding to only ~ 400 kyr, shows that glaucony formation occurred under wet, warm-temperate conditions, high accumulation rates and on rather short-term time scales. Our new integrated data thus indicate that environmental factors such as great water depth, cool temperatures, long time scales, and sediment starvation had no impact on early Late Cretaceous glaucony formation in Saxony, suggesting that the determining factors of ancient glaucony may be fundamentally different from recent conditions and revealing certain limitations of the uniformitarian approach.


2012 ◽  
Vol 183 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Ugur Kagan Tekin ◽  
M. Cemal Göncüoglu ◽  
Seda Uzuncimen

Abstract The Bornova Flysch Zone (BFZ) in NW Anatolia comprises several olistoliths or tectonic slivers, representing various parts of the Izmir-Ankara ocean. Radiolarian assemblages extracted from one of the olistoliths of the BFZ, cropping out along the Sögütlü section, to the NE Manisa city, were studied in detail. The lowermost part of the section contains latest Bajocian – early Callovian radiolarian taxa, followed by radiolarian assemblages indicating Late Jurassic to early Late Cretaceous (Cenomanian) ages. Previous studies reveal that the Izmir-Ankara oceanic basin was initially opened during late Ladinian – early Carnian. The new radiolarian data obtained from this olistolith reveals that relatively condensed, and possibly more or less continuous, pelagic sedimentation took place during the late Middle Jurassic to early Late Cretaceous in a non-volcanic oceanic basin closer to the Tauride-Anatolide platform margin.


2014 ◽  
Vol 51 (7) ◽  
pp. 677-681 ◽  
Author(s):  
Matthew J. Vavrek ◽  
Alison M. Murray ◽  
Phil R. Bell

A recent survey of the middle Cenomanian Dunvegan Formation along the Peace River, Alberta, has yielded a partial skull of a large acipenseriform fish. The fossil was from an animal approximately 5 m in length, based on comparisons with living relatives. Though incomplete, this represents an important record of mid-Cretaceous fish from northern North America, as formations of this age are virtually unexplored in northern regions. This fossil is the oldest acipenserid from North America, and one of the most northerly known.


2010 ◽  
Vol 57 (5) ◽  
pp. 391-412 ◽  
Author(s):  
L. Cavin ◽  
H. Tong ◽  
L. Boudad ◽  
C. Meister ◽  
A. Piuz ◽  
...  
Keyword(s):  

2021 ◽  
Vol 4 (3) ◽  
Author(s):  
ANDRÉ NEL

Gaps in the fossil record are the major challenge for estimations of impacts of crises of biodiversity of the various clades. They can lead to important misinterpretations in the effects of the different events on the fauna and flora. It is especially the case for the end-Cretaceous, which is ‘near the midpoint of a 16-million-year gap in the insect fossil record’ (Schachat & Labandeira, 2021: 111). All the important Cretaceous insect Konzentrat Lagerstätten are before the Turonian. The analysis of Schachat et al. (2019) has reconstructed a massive loss of family-level diversity for the insects at the boundary Cretaceous-Cenozoic, a possible artefact due to this gap. An alternative scenario was that a turnover in the entomofauna occurred during the early Late Cretaceous in relation to the floristic changes of the Albian–Cenomanian (Nel et al., 2018). This turnover would have also affected the aquatic insects through important changes in the freshwater environments (Sinitshenkova & Zherikhin, 1996; Ivanov & Sukatsheva, 2002). The current knowledge on the odonatan fossil record suggests a pronounced turnover with the last records of several major clades during the Cenomanian-Turonian and first records of several modern ones during the same period (Nel et al., 2015). The widespread and very diverse Jurassic-Cretaceous family Aeschnidiidae is among the best examples of such extinctions supposed to have occurred after the Cenomanian, because of the absence of any fossil in younger strata.


2011 ◽  
Vol 83 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Juan D. Porfiri ◽  
Jorge O. Calvo ◽  
Domenica dos Santos

Here we report on a new small deinonychosaurian theropod, Pamparaptor micros gen. et sp. nov., from the Late Cretaceous of Patagônia, Argentina. Pamparaptor micros exhibits a pedal structure previously unknown among South Américan deinonychosaurians. The new material provides new evidence about the morphology and taxonomic diversity of Patagônian deinonychosaurs. Pamparaptor is the smaller non-avialae Patagônian deinonychosaur, probably with about 0.50-0.70 meters, long. The pedal construction resembles, that of Troodontid or basal Dromaeosaurids. Nevertheless, up to now, we considered Pamparaptor a peculiar Patagônian Dromaeosaurid with troodontid-like pes.


Sign in / Sign up

Export Citation Format

Share Document