Radiolarian assemblages of Middle and Late Jurassic to early Late Cretaceous (Cenomanian) ages from an olistolith record pelagic deposition within the Bornova Flysch Zone in western Turkey

2012 ◽  
Vol 183 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Ugur Kagan Tekin ◽  
M. Cemal Göncüoglu ◽  
Seda Uzuncimen

Abstract The Bornova Flysch Zone (BFZ) in NW Anatolia comprises several olistoliths or tectonic slivers, representing various parts of the Izmir-Ankara ocean. Radiolarian assemblages extracted from one of the olistoliths of the BFZ, cropping out along the Sögütlü section, to the NE Manisa city, were studied in detail. The lowermost part of the section contains latest Bajocian – early Callovian radiolarian taxa, followed by radiolarian assemblages indicating Late Jurassic to early Late Cretaceous (Cenomanian) ages. Previous studies reveal that the Izmir-Ankara oceanic basin was initially opened during late Ladinian – early Carnian. The new radiolarian data obtained from this olistolith reveals that relatively condensed, and possibly more or less continuous, pelagic sedimentation took place during the late Middle Jurassic to early Late Cretaceous in a non-volcanic oceanic basin closer to the Tauride-Anatolide platform margin.

2020 ◽  
Author(s):  
Remi J.G. Charton

Our understanding of the Earth’s interior is limited by the access we have of its deep layers, while the knowledge we have of Earth’s evolution is restricted to harvested information from the present state of our planet. We therefore use proxies, physical and numerical models, and observations made on and from the surface of the Earth. The landscape results from a combination of processes operating at the surface and in the subsurface. Thus, if one knows how to read the landscape, one may unfold its geological evolution.In the past decade, numerous studies have documented km-scale upward and downward vertical movements in the continental rifted margins of the Atlantic Ocean and in their hinterlands. These movements, described as exhumation (upward) and subsidence (downward), have been labelled as “unpredicted” and/or “unexpected”. ‘Unpredicted’ because conceptual, physical, and numerical models that we dispose of for the evolution of continental margins do not generally account for these relatively recent observations. ‘Unexpected’ because the km-scale vertical movements occurred when our record of the geological history is insufficient to support them. As yet, the mechanisms responsible for the km-scale vertical movements remain enigmatic.One of the common techniques used by geoscientists to investigate the past kinematics of the continental crust is to couple ‘low-temperature thermochronology’ and ‘time-temperature modelling’. In Morocco alone, over twenty studies were conducted following this approach. The reason behind this abundance of studies and the related enthusiasm of researchers towards Moroccan geology is due to its puzzling landscapes and complex history. In this Thesis, we investigate unconstrained aspects of the km-scale vertical movements that occurred in Morocco and its surroundings (Canary Islands, Algeria, Mali, and Mauritania). The transition area between generally subsiding domains and mostly exhuming domains, yet poorly understood, is discussed via the evolution of a profile, running across the rifted continental margin (chapter 2). Low-temperature thermochronology data from the central Morocco coastal area document a km-scale exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the northwest. Basement rocks along the transect were subsequently buried between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.The post-Variscan thermal and geological history of the Anti-Atlas belt in central Morocco is constrained with a transect constructed along strike of the belt (chapter 3). The initial episode occurred in the Late Triassic and led to a km-scale exhumation of crustal rocks by the end of the Middle Jurassic. The following phase was characterised by basement subsidence and occurred during the Late Jurassic and most of the Early Cretaceous. The basement rocks were then slowly brought to the surface after experiencing a km-scale exhumation throughout the Late Cretaceous and the Cenozoic. The exhumation episodes extended into the interior of the African tectonic plate, perhaps beyond the sampled belt itself. Exhumation rates and fluxes of material eroded from the hinterlands of the Moroccan rifted margin were quantified from the Permian (chapter 4). The high denudation rates, obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene, are comparable to values typical of rift flank, domal, or structural uplifts. These are obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene. Exhumation rates for other periods in northern to southern Morocco average around ‘normal’ denudation values. Periods of high production of sediments in the investigated source areas are the Permian, the Jurassic, the Early Cretaceous, and the NeogeneThe Phanerozoic evolution of source-to-sink systems in Morocco and surroundings is illustrated in several maps (chapter 5). Substantial shifts in the source areas were evidenced between the central and northern Moroccan domains during the Middle-Late Jurassic and between the Meseta and the Anti-Atlas during the Early-Late Cretaceous. Finally, the mechanisms responsible for the onset and subsistence of the unpredicted km-scale vertical movements are discussed (chapter 6). We propose that a combination of the large-scale crustal folding, mantle-driven dynamic topography, and thermal subsidence, superimposed to changes in climates, sea level and erodibility of the exposed rocks, were crucial to the timing, amplitude, and style of the observed vertical movements.The km-scale vertical movements will continue to be studied for years to come. Expectantly, this Thesis will deliver sufficiently robust grounds for further elaborated and integrated studies in Morocco and beyond.


2017 ◽  
Vol 67 (3) ◽  
pp. 393-403 ◽  
Author(s):  
Daniel Madzia ◽  
Marcin Machalski

AbstractBrachauchenine pliosaurids were a cosmopolitan clade of macropredatory plesiosaurs that are considered to represent the only pliosaurid lineage that survived the faunal turnover of marine amniotes during the Jurassic- Cretaceous transition. However, the European record of the Early to early Late Cretaceous brachauchenines is largely limited to isolated tooth crowns, most of which have been attributed to the classic Cretaceous taxon Polyptychodon. Nevertheless, the original material of P. interruptus, the type species of Polyptychodon, was recently reappraised and found undiagnostic. Here, we describe a collection of twelve pliosaurid teeth from the upper Albian-middle Cenomanian interval of the condensed, phosphorite-bearing Cretaceous succession at Annopol, Poland. Eleven of the studied tooth crowns, from the Albian and Cenomanian strata, fall within the range of the morphological variability observed in the original material of P. interruptus from the Cretaceous of England. One tooth crown from the middle Cenomanian is characterized by a gently subtrihedral cross-section. Similar morphology has so far been described only for pliosaurid teeth from the Late Jurassic and Early Cretaceous. Even though it remains impossible to precisely settle the taxonomic distinctions, the studied material is considered to be taxonomically heterogeneous.


2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Cecily S. C. Nicholl ◽  
Eloise S. E. Hunt ◽  
Driss Ouarhache ◽  
Philip D. Mannion

Notosuchians are an extinct clade of terrestrial crocodyliforms with a particularly rich record in the late Early to Late Cretaceous (approx. 130–66 Ma) of Gondwana. Although much of this diversity comes from South America, Africa and Indo-Madagascar have also yielded numerous notosuchian remains. Three notosuchian species are currently recognized from the early Late Cretaceous (approx. 100 Ma) Kem Kem Group of Morocco, including the peirosaurid Hamadasuchus rebouli . Here, we describe two new specimens that demonstrate the presence of at least a fourth notosuchian species in this fauna. Antaeusuchus taouzensis n. gen. n. sp. is incorporated into one of the largest notosuchian-focused character-taxon matrices yet to be compiled, comprising 443 characters scored for 63 notosuchian species, with an increased sampling of African and peirosaurid species. Parsimony analyses run under equal and extended implied weighting consistently recover Antaeusuchus as a peirosaurid notosuchian, supported by the presence of two distinct waves on the dorsal dentary surface, a surangular which laterally overlaps the dentary above the mandibular fenestra, and a relatively broad mandibular symphysis. Within Peirosauridae, Antaeusuchus is recovered as the sister taxon of Hamadasuchus . However, it differs from Hamadasuchus with respect to several features, including the ornamentation of the lateral surface of the mandible, the angle of divergence of the mandibular rami, the texture of tooth enamel and the shape of the teeth, supporting their generic distinction. We present a critical reappraisal of the non-South American Gondwanan notosuchian record, which spans the Middle Jurassic–late Eocene. This review, as well as our phylogenetic analyses, indicate the existence of at least three approximately contemporaneous peirosaurid lineages within the Kem Kem Group, alongside other notosuchians, and support the peirosaurid affinities of the ‘trematochampsid’ Miadanasuchus oblita from the Maastrichtian of Madagascar. Furthermore, the Cretaceous record demonstrates the presence of multiple lineages of approximately contemporaneous notosuchians in several African and Madagascan faunas, and supports previous suggestions regarding an undocumented pre-Aptian radiation of Notosuchia. By contrast, the post-Cretaceous record is depauperate, comprising rare occurrences of sebecosuchians in north Africa prior to their extirpation.


2020 ◽  
Author(s):  
Cunjian Zhang ◽  
Jingdong Liu ◽  
Youlu Jiang

<p>Research on overpressure evolution and its formation mechanisms is of great significance for revealing reservoir formation mechanisms and predicting formation pressures in oil and gas reservoirs before drilling. However, research methods addressing overpressure evolution are not without issues. The fluid inclusion PVT simulation and basin simulation can be used to investigate the paleo-pressure.</p> <p>The homogenization temperatures of inclusions were tested. The accuracy of the microscopic laser Raman spectroscopy analysis is too limited to fully test the components of gaseous hydrocarbon inclusions so that the organic components of the natural gas in the present-day gas reservoirs represented the gaseous hydrocarbon inclusions. In addition, the vapor-liquid ratio of gaseous hydrocarbon inclusions cannot be measured by CLSM. Firstly, A series of images at different slice depths was obtained by adjusting the focal length of a high-resolution microscope. Secondly, CorelDRAW software was used to calculate the areas of inclusions and bubbles; fitting functions were established between the inclusion areas and slice depths, and between the bubble areas and slice depths. Finally, the inclusion and bubble volumes were integrated to obtain the vapor-liquid ratios of the inclusions. PVTsim software can calculate the trapping pressures of inclusions. Combined with basin simulation, the evolution of paleo-pressure can be determined.</p> <p>The above methods were used to investigate the paleo-pressure of the Upper Triassic Xujiahe Formation in the northeast portion of the Sichuan Basin. Overpressure began to develop in the Middle Jurassic period. Due to hydrocarbon generation taking place, the formation pressure increased rapidly from the Middle Jurassic period to the early Late Cretaceous period. Since the early Late Cretaceous period, the formation pressure has gradually decreased due to tectonic uplift and erosion. From the Oligocene period to the present, the formation pressure have increased again in local areas due to tectonic compression.</p>


2016 ◽  
Vol 12 (2) ◽  
pp. 65
Author(s):  
Saultan Panjaitan ◽  
Subagio Subagio

Anomali gayaberat di daerah penelitian merupakan anomali tertinggi di Indonesia, secara umum dikelompokkan ke dalam 2 (dua) satuan, yaitu: kelompok anomali gayaberat 160 mGal hingga 260 mGal membentuk pola rendahan/cekungan anomali, dan kelompok anomali gayaberat 260 mGal hingga 620 mGal membentuk pola tinggian anomali. Anomali sisa 0 mGal hingga 5 mGal membentuk tinggian anomali, diduga merupakan gambaran antiklin dengan diameter 10 – 15 kilometer. Perangkap struktur migas di daerah Minaluli, Madafuhi dan Lekosula Pulau Mangole berdekatan dengan lokasi rembesan migas, sehingga diusulkan untuk dilakukan pemboran eksplorasi. Sedangkan di Pulau Taliabu, Tolong, Pena, Samuya dan Teluk Jiko masih perlu dilakukan penambahan data. Batuan reservoir terdiri dari batupasir dan batugamping Formasi Tanamu berumur Kapur Akhir, menempati daerah beranomali sisa 0 mGal hingga 5 mGal, dengan rapat massa batuan sekitar 2.65 gr/cm³. Batuan induk adalah Formasi Buya umur Jura Tengah - Jura Akhir dari serpih hitam dengan rapat massa 2.71 gr/cm³, dan dapur migas terbentuk di sekitar daerah beranomali sisa -4 mGal hingga -28 mGal yang membentuk sub-cekungan di utara lepas pantai Pulau Mangole. Kata kunci: gayaberat, dapur minyak, cekungan, migas, serpih hitam, anomali sisa, rapat massa, antiklin, batuan induk. The gravity anomaly of research area is the highest anomaly in Indonesia, generally it can be grouped into 2 (two) units, that are 160 mGal up to 260 mGal anomaly groups formed low anomaly pattern, and 260 mGal up to 620 mGal anomaly groups formed high anomaly pattern. 0 mGal to 5 mGal residual anomaly formed high anomaly pattern, it is interpreted as anticline with diameter are 10-15 kilometers. The trap oil and gas structures of this area at Minaluli, Madafuhi, and Lekosula are near the location of oil and gas seepage, that is propose to explore and drill in that area. Whereas in Taliabu Island, Tolong, Pena, Samuya, and Jiko Gulf still need increasing datas. Reservoir rocks consist of sandstones and limestones of Tanamu Formations were Late Cretaceous age, that occupied the location of 0 mGal to 5 mGal residual anomaly with density 2.65 g/cm ³. Hostrock are Buya Formation are Middle Jurassic - Late Jurassic from black shales with density 2.71 g/cm³, and kitchen oil were formed in the area - 4 mGal to -28 mGal residual anomaly that formed low anomaly in the northern offshore of Mangole Island. Keyword: gravity, oil kitchen, basin, oil and gas, black shales, recidual anomaly, density, anticline, hostrocks.


1982 ◽  
Vol 8 ◽  
pp. 45-49
Author(s):  
Jens Morgen Hansen ◽  
Arne Buch

The Early Cretaceous sea primarily covered the same basinal regions as the Late Jurassic sea but, late in the Early Cretaceous the sea also covered Late Jurassic land masses. During Early Cretaceous time the topography of the North Sea region became gradually buried. The following major transgression comprises the transition Early/Late Cretaceous. At the Jurassic/ Cretaceous transition, the Late Cimmerian unconformity is a significant feature (fig. 24), known from large parts of the North Sea region. The subsequent transgression and sedimentation of marine clay (the Valhall Formation), and marine sand (the LC-1 Unit), started late in Late Jurassic. Therefore, the formations described in the present chapter also comprise sediments of Late Jurassic age. Thicknesses of the Lower Cretaceous sediments are given in fig. 15.


1993 ◽  
Vol 30 (10) ◽  
pp. 2002-2012 ◽  
Author(s):  
Dale A. Russell

Dinosaurian biogeography may have been largely controlled by the Mesozoic fragmentation of Pangea and the reassembly of its fragments into a new, boreal supercontinent (Laurasia). Although Late Triassic and Early Jurassic dinosaurs were globally distributed, Chinese assemblages were dominated by endemic forms from Middle Jurassic into Early Cretaceous time. The affinities of Aptian – Albian immigrants to Asia were strongest with North America and Europe rather than Gondwana, indicating that the northern and southern hemispheres had by then attained their biogeographic identity. This distinctiveness was maintained through Cretaceous time. Europe seems to have been a buffer area between Paleolaurasia and Gondwana; of the northern continents it was the most strongly influenced by Gondwana dispersants. Late Jurassic dinosaur assemblages in North America exhibited Gondwana affinities, but by Late Cretaceous time they were dominated by forms of Asian ancestry.


Sign in / Sign up

Export Citation Format

Share Document