scholarly journals Can spawning origin information of catch or a recruitment penalty improve assessment and fishery management performance for a spatially structured stock assessment model?

2018 ◽  
Vol 75 (12) ◽  
pp. 2136-2148 ◽  
Author(s):  
Yang Li ◽  
James R. Bence ◽  
Travis O. Brenden

We used simulations based on lake whitefish (Coregonus clupeaformis) populations to explore the benefits of using spawning origin information for parsing catch to spawning populations in stock assessments for intermixed fisheries exhibiting an overlapping movement strategy. We compared this origin-informed assessment model with a standard assessment model that did not parse catch. We additionally evaluated the influence of including annual recruitment penalties. For standard assessment models, spawning stock biomass estimates could be unstable and biased (sometimes by more than 50%), depending upon population mixing and productivity, and in some cases estimated near average zero recruitment in the terminal year. Incorporating information on population-specific harvest age composition improved spawning stock biomass estimation (e.g., by sometimes essentially removing 50% biases and improving accuracy). Assessments with recruitment penalties produced less biased terminal recruitment estimates (sometimes a 100% bias was removed). Under status quo target mortality rates, improvements in assessments did not necessarily translate to improved fishery management performance (e.g., avoiding depletion of spawning biomass), but such improvements, and overall better performance, were seen at lower target mortality rates.

2018 ◽  
Vol 75 (6) ◽  
pp. 2016-2024
Author(s):  
Hiroshi Okamura ◽  
Yuuho Yamashita ◽  
Momoko Ichinokawa ◽  
Shota Nishijima

Abstract Age-structured models have played an important role in fisheries stock assessment. Although virtual population analysis (VPA) was once the most widely used stock assessment model for when catch-at-age information is available, (hierarchical) statistical catch-at-age analysis (SCAA) is about to take that position. However, the estimation performance of different age-structured models has not been evaluated sufficiently, especially in cases where there are few available abundance indices. We examined the performance of VPA and SCAA using simulation data in which only the abundance indices of spawning stock biomass and recruitment were available. The simulation demonstrated that VPA with the ridge penalty selected by minimizing retrospective bias provided near-unbiased abundance estimates without catch-at-age error and moderately biased estimates with catch-at-age error, whereas SCAA with random-walk selectivity suffered from problems in estimating parameters and population states. Without sufficient information on abundance trends, naïvely using SCAA with many random effects should be done cautiously, and comparing results from various age-structured models via simulation tests will be informative in selecting an appropriate stock assessment model.


2010 ◽  
Vol 67 (8) ◽  
pp. 1247-1261 ◽  
Author(s):  
Nicolas Bousquet ◽  
Noel Cadigan ◽  
Thierry Duchesne ◽  
Louis-Paul Rivest

Landings from fisheries are often underreported, that is, the true landings are greater than those reported. Despite this bias, reported landings are widely used in fish stock assessments, and this might lead to overoptimistic exploitation strategies. We construct a statistical stock assessment model that accounts for underreported landings using the theory of censoring with sequential population analysis (SPA). The new model is developed and implemented specifically for the cod stock ( Gadus morhua ) from the southern Gulf of St. Lawrence (Canada). This stock is known to have unreported overfishing during 1985–1992. We show in simulations that for this stock, the new censored model can correctly detect the problematic landings. These corrections are nearly insensitive to subjective boundaries placed on real catches and robust to modifications imposed in the simulation of landings. However, when surveys are too noisy, the new SPA for censored catches can result in increased uncertainty in parameters used for management such as spawning stock biomass and age-structured stock size.


2014 ◽  
Vol 72 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Yang Li ◽  
James R. Bence ◽  
Travis O. Brenden

Abstract We used simulation modeling to explore how three statistical catch-at-age approaches for assessing intermixed fisheries performed in terms of assessment accuracy and management performance, under differing productivity, mixing, and harvest levels. Simulations were based on intermixing lake whitefish (Coregonus clupeaformis) populations in the upper Laurentian Great Lakes of North America. We found that with intermixing, the “separate” assessment approach, which ignored intermixing and treated mixed populations as unit stocks, produced biased estimates of spawning stock biomass (SSB); however, the “pooled” assessment approach, which lumped populations and assessed them as a single stock, was nearly unbiased in estimating SSB. The “overlap” assessment approach, which estimated the populations in one combined assessment model by incorporating actual mixing rates, was most strongly biased in estimating SSB in the absence of mixing, with bias decreasing as mixing levels increased. With high mixing levels, the overlap method had difficulty converging on unique solutions. The pooled approach provided better management performance than the separate approach with intermixing. When the overlap method could be applied, it provided the greatest SSB with little reductions in yield and the lowest inter-annual variation in yield. Relative performances of the assessment approaches were robust to assumed harvest levels.


2017 ◽  
Vol 74 (3) ◽  
pp. 363-376 ◽  
Author(s):  
Jie Cao ◽  
Yong Chen ◽  
R. Anne Richards

Integrated, size-structured stock assessment models are now being used widely for assessment and management of hard-to-age species. However, few studies have attempted to evaluate their performance. A seasonal, size-structured assessment model with environmental covariates has been developed for hermaphroditic Pandalidae. We conducted simulations to evaluate its sensitivity to model configuration and performance with various misspecifications. Ignoring the seasonal fishing pattern (half-year closure) led to risk-prone assessment results of overestimating spawning stock biomass (SSB) and recruitment (R) and underestimating fishing mortality (F). Failure to incorporate environmental signals when the recruitment dynamics was environmentally driven led to bias in recent estimates of SSB, R, and F in the simulation. Ignoring annual variability in growth resulted in large estimation bias. Failing to account for time-varying natural mortality (M) led to strong biases; however, misspecifying size-specific M produced even stronger estimation bias. This result may depend on the variation of M among size classes. Under no model misspecifications, an unbiased estimate of M could be obtained by taking advantage of the seasonal fishery closure. Annual growth parameters were also estimable, but the large number of parameters with annual growth made it difficult for the model to converge.


2016 ◽  
Vol 74 (1) ◽  
pp. 56-68 ◽  
Author(s):  
Fabian Zimmermann ◽  
Katja Enberg

Uncertain and inaccurate estimates are a prevailing problem in stock assessment, despite increasingly sophisticated estimation methods and substantial usage of scientific and financial resources. Annual scientific surveys and assessment group meetings require frequent use of research vessels and skilled research staff and are, therefore, particularly costly. This data- and work-intensive approach is often considered paramount for reliable stock estimates and risk management. However, it remains an open question whether the benefits of increasing assessment effort outweigh its marginal costs, or whether the potential impacts of investing less in assessments could generate net benefits. In this study, we explore how different scenarios of reduced survey and assessment frequencies affect estimated stock biomass, predicted catch, and uncertainty. Data of two Northeast Atlantic stocks, blue whiting (Micromesistius poutassou) and Norwegian spring-spawning herring (Clupea harengus), and a widely applied stock assessment model are used to compare the impacts of removing surveys and/or annual assessments. The results show that lower survey and/or assessment frequencies tend to result in deviating estimates of spawning-stock biomass and catch and larger confidence intervals, the observed differences being, however, mostly small. While scenarios without a survey datapoint in the assessment year generally produced the largest deviations in estimates, biannual surveys in general did not affect assessment performance substantially. This indicates that a reduced frequency of surveys and assessments could be an acceptable measure to reduce assessment costs and increase the efficiency of fisheries management, particularly when accompanied by thorough management strategy evaluations and risk assessments.


2017 ◽  
Vol 74 (5) ◽  
pp. 779-789 ◽  
Author(s):  
Christoffer Moesgaard Albertsen ◽  
Anders Nielsen ◽  
Uffe Høgsbro Thygesen

Data used in stock assessment models result from combinations of biological, ecological, fishery, and sampling processes. Since different types of errors propagate through these processes, it can be difficult to identify a particular family of distributions for modelling errors on observations a priori. By implementing several observational likelihoods, modelling both numbers- and proportions-at-age, in an age-based state-space stock assessment model, we compare the model fit for each choice of likelihood along with the implications for spawning stock biomass and mean fishing mortality. We propose using AIC intervals based on fitting the full observational model for comparing different observational likelihoods. Using data from four stocks, we show that the model fit is improved by modelling the correlation of observations within years. However, the best choice of observational likelihood differs for different stocks, and the choice is important for the short-term conclusions drawn from the assessment model; in particular, the choice can influence total allowable catch advise based on reference points.


2012 ◽  
Vol 69 (8) ◽  
pp. 1448-1456 ◽  
Author(s):  
Anna Gårdmark ◽  
Örjan Östman ◽  
Anders Nielsen ◽  
Karl Lundström ◽  
Olle Karlsson ◽  
...  

Abstract Gårdmark, A., Östman, Ö., Nielsen, A., Lundström K., Karlsson O., Pönni, J., and Aho, T. 2012. Does predation by grey seals (Halichoerus grypus) affect Bothnian Sea herring stock estimates? – ICES Journal of Marine Science, 69: . Mortality of small pelagic fish due to marine mammals is generally considered to be low compared with other sources of mortality. With recent recoveries of marine mammal predators worldwide, this may no longer hold. The grey seal (Halichoerus grypus) population in the Bothnian Sea has increased fivefold since 1985. Its main prey, herring (Clupea harrengus), is a key species for fisheries in the region. Yet, current stock assessments assume constant natural mortality, leading to a risk of biased stock estimates with increasing predation and misleading analyses of herring population dynamics. We estimated grey seal predation from diet data and reanalysed herring spawning stock biomass (SSB) during 1973–2009. Accounting for predation increased the herring SSB 16% (maximum 19%), but this was within the confidence intervals when ignoring predation. Although mortality in older individuals was inflated when accounting for seal predation, this did not change the conclusions about drivers of herring dynamics. Accounting for grey seal predation is important for abundance estimates of old herring, but currently not for SSB estimates, given the great uncertainties in the standard assessment. The grey seal impact on Bothnian Sea herring will need to be reassessed if stock age composition, grey seal feeding preferences, or total stock development change.


2020 ◽  
Vol 7 ◽  
Author(s):  
David Chagaris ◽  
Katie Drew ◽  
Amy Schueller ◽  
Matt Cieri ◽  
Joana Brito ◽  
...  

Atlantic menhaden (Brevoortia tyrannus) are an important forage fish for many predators, and they also support the largest commercial fishery by weight on the U.S. East Coast. Menhaden management has been working toward ecological reference points (ERPs) that account for menhaden’s role in the ecosystem. The goal of this work was to develop menhaden ERPs using ecosystem models. An existing Ecopath with Ecosim model of the Northwest Atlantic Continental Shelf (NWACS) was reduced in complexity from 61 to 17 species/functional groups. The new NWACS model of intermediate complexity for ecosystems (NWACS-MICE) serves to link the dynamics of menhaden with key managed predators. Striped bass (Morone saxatilis) were determined to be most sensitive to menhaden harvest and therefore served as an indicator of ecosystem impacts. ERPs were based on the tradeoff relationship between the equilibrium biomass of striped bass and menhaden fishing mortality (F). The ERPs were defined as the menhaden F rates that maintain striped bass at their biomass target and threshold when striped bass are fished at their Ftarget, and all other modeled species were fished at status quo levels. These correspond to an ERP Ftarget of 0.19 and an ERP Fthreshold of 0.57, which are lower than the single species reference points by 30–40%, but higher than current (2017) menhaden F. The ERPs were then fed back into the age-structured stock assessment model projections to provide information on total allowable catch. The ERPs developed in this study were adopted by the Atlantic menhaden Management Board, marking a shift toward ecosystem-based fishery management for this economically and ecologically important species.


2015 ◽  
Vol 27 (4) ◽  
pp. 333-340 ◽  
Author(s):  
Stuart Hanchet ◽  
Keith Sainsbury ◽  
Doug Butterworth ◽  
Chris Darby ◽  
Viacheslav Bizikov ◽  
...  

AbstractSeveral recent papers have criticized the scientific robustness of the fisheries management system used by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), including that for Ross Sea toothfish. Here we present a response from the wider CCAMLR community to address concerns and to correct some apparent misconceptions about how CCAMLR acts to promote conservation whilst allowing safe exploitation in all of its fisheries. A key aspect of CCAMLR’s approach is its adaptive feedback nature; regular monitoring and analysis allows for adjustments to be made, as necessary, to provide a robust management system despite the statistical uncertainties inherent in any single assessment. Within the Ross Sea, application of CCAMLR’s precautionary approach has allowed the toothfish fishery to develop in a steady fashion with an associated accumulation of data and greater scientific understanding. Regular stock assessments of the fishery have been carried out since 2005, and the 2013 stock assessment estimated current spawning stock biomass to be at 75% of the pre-exploitation level. There will always be additional uncertainties which need to be addressed, but where information is lacking the CCAMLR approach to management ensures exploitation rates are at a level commensurate with a precautionary approach.


2011 ◽  
Vol 62 (8) ◽  
pp. 927 ◽  
Author(s):  
Chantell R. Wetzel ◽  
André E. Punt

Limited data are a common challenge posed to fisheries stock assessment. A simulation framework was applied to examine the impact of limited data and data type on the performance of a widely used catch-at-age stock-assessment method (Stock Synthesis). The estimation method provided negatively biased estimates of current spawning-stock biomass (SSB) relative to the unfished level (final depletion) when only recent survey indices were available. Estimation of quantities of management interest (unfished SSB, virgin recruitment, target fishing mortality and final depletion) improved substantially even when only minimal-length-composition data from the survey were available. However, the estimates of some quantities (final depletion and unfished SSB) remained biased (either positively or negatively) even in the scenarios with the most data (length compositions, age compositions and survey indices). The probability of overestimating yield at the target SSB relative to the true such yield was ~50%, a risk-neutral result, for all the scenarios that included length-composition data. Our results highlight the importance of length-composition data for the performance of an age-structured assessment model, and are encouraging for the assessment of data-limited stocks.


Sign in / Sign up

Export Citation Format

Share Document