Genetic variation in westslope cutthroat trout reveals that widespread genetic rescue is warranted

Author(s):  
Ryan P. Kovach ◽  
Robb F. Leary ◽  
Donovan Bell ◽  
Sally Painter ◽  
Angela Lodmell ◽  
...  

Although human fragmentation of freshwater habitats is ubiquitous, the genetic consequences of isolation and a roadmap to address them are poorly documented for most fishes. This is unfortunate, because translocation for genetic rescue could help mitigate problems. We used genetic data (32 SNPs) from 203 populations of westslope cutthroat trout to (1) document the effect of fragmentation on genetic variation and population structure, (2) identify candidate populations for genetic rescue, and (3) quantify the potential benefits of strategic translocation efforts. Human-isolated populations had substantially lower genetic variation and elevated genetic differentiation, indicating that many populations are strongly influenced by random genetic drift. Based on simple criteria, 23 populations were candidates for genetic rescue, which represented a majority (51%) of suitable populations in one major region (Missouri drainage). Population genetic theory suggests that translocation of a small number of individuals (~5 adults) from nearby populations could dramatically increase heterozygosity by up to 58% (average across populations). This effort provides a clear template for future conservation of westslope cutthroat trout, while simultaneously highlighting the potential need for similar efforts in many freshwater species.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246365
Author(s):  
Kellie J. Carim ◽  
Scott Relyea ◽  
Craig Barfoot ◽  
Lisa A. Eby ◽  
John A. Kronenberger ◽  
...  

Human activities that fragment fish habitat have isolated inland salmonid populations. This isolation is associated with loss of migratory life histories and declines in population density and abundance. Isolated populations exhibiting only resident life histories may be more likely to persist if individuals can increase lifetime reproductive success by maturing at smaller sizes or earlier ages. Therefore, accurate estimates of age and size at maturity across resident salmonid populations would improve estimates of population viability. Commonly used methods for assessing maturity such as dissection, endoscopy and hormone analysis are invasive and may disturb vulnerable populations. Ultrasound imaging is a non-invasive method that has been used to measure reproductive status across fish taxa. However, little research has assessed the accuracy of ultrasound for determining maturation status of small-bodied fish, or reproductive potential early in a species’ reproductive cycle. To address these knowledge gaps, we tested whether ultrasound imaging could be used to identify maturing female Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Our methods were accurate at identifying maturing females reared in a hatchery setting up to eight months prior to spawning, with error rates ≤ 4.0%; accuracy was greater for larger fish. We also imaged fish in a field setting to examine variation in the size of maturing females among six wild, resident populations of Westslope Cutthroat Trout in western Montana. The median size of maturing females varied significantly across populations. We observed oocyte development in females as small as 109 mm, which is smaller than previously documented for this species. Methods tested in this study will allow researchers and managers to collect information on reproductive status of small-bodied salmonids without disrupting fish during the breeding season. This information can help elucidate life history traits that promote persistence of isolated salmonid populations.


Author(s):  
Donald M. Waller ◽  
Lukas F. Keller

Inbreeding (also referred to as “consanguinity”) occurs when mates are related to each other due to incest, assortative mating, small population size, or population sub-structuring. Inbreeding results in an excess of homozygotes and hence a deficiency of heterozygotes. This, in turn, exposes recessive genetic variation otherwise hidden by heterozygosity with dominant alleles relative to random mating. Interest in inbreeding arose from its use in animal and plant breeding programs to expose such variation and to fix variants in genetically homogenous lines. Starting with Gregor Mendel’s experiments with peas, geneticists have widely exploited inbreeding as a research tool, leading R. C. Lewontin to conclude that “Every discovery in classical and population genetics has depended on some sort of inbreeding experiment” (see Lewontin’s 1965 article “The Theory of Inbreeding.” Science 150:1800–1801). Charles Darwin wrote an entire book on the effects of inbreeding as measured in fifty-two taxa of plants. He and others noted that most plants and animals go to great length to avoid inbreeding, suggesting that inbreeding has high costs that often outweigh the benefits of inbreeding. Benefits of inbreeding include increased genetic transmission while the costs of inbreeding manifest as inbreeding depression when deleterious, mostly recessive alleles otherwise hidden as heterozygotes emerge in homozygote form upon inbreeding. Inbreeding also reduces fitness when heterozygotes are more fit than both homozygotes, but such overdominance is rare. Recurrent mutation continuously generates deleterious recessive alleles that create a genetic “load” of deleterious mutations mostly hidden within heterozygotes in outcrossing populations. Upon inbreeding, the load is expressed when deleterious alleles segregate as homozygotes, causing often substantial inbreeding depression. Although inbreeding alone does not change allele frequencies, it does redistribute genetic variation, reducing it within families or populations while increasing it among families or populations. Inbreeding also increases selection by exposing deleterious recessive mutations, a process called purging that can deplete genetic variation. For all these reasons, inbreeding is a central concept in evolutionary biology. Inbreeding is also central to conservation biology as small and isolated populations become prone to inbreeding and thus suffer inbreeding depression. Inbreeding can reduce population viability and increase extinction risk by reducing individual survival and/or reproduction. Such effects can often be reversed, however, by introducing new genetic material that re-establishes heterozygosity (“genetic rescue”). The current availability of DNA sequence and expression data is now allowing more detailed analyses of the causes and evolutionary consequences of inbreeding.


2005 ◽  
Vol 53 (8) ◽  
pp. 781 ◽  
Author(s):  
Mayra S. Caldiz ◽  
Andrea C. Premoli

We evaluated the amount and distribution of genetic variation in large and small isolated populations of Luma apiculata (DC.) Burret (Myrtaceae) in north-western Patagonia. The hypothesis tested was that isolated smaller populations were more affected by drift and isolation than large stands. Higher genetic diversity was predicted in the latter. Fresh leaf material for isozyme electrophoresis was collected from 30 individuals in four isolated and two large and continuous stands (Quetrihue Peninsula and Punta Norte, Isla Victoria). Five subpopulations were sampled in both large stands, and in addition, three regeneration gaps in Punta Norte. Eleven loci were resolved; 91% were polymorphic in at least one population. Isolated and large populations had similar levels of genetic variation. Reduced observed heterozygosity and elevated inbreeding were measured in subpopulations and regeneration gaps within dense stands. Although small populations consist of a reduced number of individuals they are mostly coastal populations nearby rivers and lakes that may maintain considerable gene flow with other faraway populations counteracting the effects of drift. In addition to potential selfing, increased inbreeding within large populations and regeneration gaps may be due to an intra-population Wahlund effect from local seedling establishment and vegetative spread, resulting in clustered cohorts of similar genotypes.


2011 ◽  
Vol 12 (6) ◽  
pp. 1513-1523 ◽  
Author(s):  
Daniel P. Drinan ◽  
Steven T. Kalinowski ◽  
Ninh V. Vu ◽  
Bradley B. Shepard ◽  
Clint C. Muhlfeld ◽  
...  

2015 ◽  
Vol 112 (33) ◽  
pp. 10557-10562 ◽  
Author(s):  
Ruth A. Hufbauer ◽  
Marianna Szűcs ◽  
Emily Kasyon ◽  
Courtney Youngberg ◽  
Michael J. Koontz ◽  
...  

Setting aside high-quality large areas of habitat to protect threatened populations is becoming increasingly difficult as humans fragment and degrade the environment. Biologists and managers therefore must determine the best way to shepherd small populations through the dual challenges of reductions in both the number of individuals and genetic variability. By bringing in additional individuals, threatened populations can be increased in size (demographic rescue) or provided with variation to facilitate adaptation and reduce inbreeding (genetic rescue). The relative strengths of demographic and genetic rescue for reducing extinction and increasing growth of threatened populations are untested, and which type of rescue is effective may vary with population size. Using the flour beetle (Tribolium castaneum) in a microcosm experiment, we disentangled the genetic and demographic components of rescue, and compared them with adaptation from standing genetic variation (evolutionary rescue in the strictest sense) using 244 experimental populations founded at either a smaller (50 individuals) or larger (150 individuals) size. Both types of rescue reduced extinction, and those effects were additive. Over the course of six generations, genetic rescue increased population sizes and intrinsic fitness substantially. Both large and small populations showed evidence of being able to adapt from standing genetic variation. Our results support the practice of genetic rescue in facilitating adaptation and reducing inbreeding depression, and suggest that demographic rescue alone may suffice in larger populations even if only moderately inbred individuals are available for addition.


2010 ◽  
Vol 11 (5) ◽  
pp. 1929-1943 ◽  
Author(s):  
Andrew R. Whiteley ◽  
Kim Hastings ◽  
John K. Wenburg ◽  
Chris A. Frissell ◽  
Jamie C. Martin ◽  
...  

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Having identified small geographically and genetically isolated populations, we need to determine whether they are suffering genetic erosion, and if so, whether there are any other populations to which they could be crossed. We should next ask whether crossing is expected to be harmful or beneficial, and if beneficial, whether the benefits would be large enough to justify a genetic rescue attempt. Here, we address these questions based on the principles established in the preceding chapters.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
T J Buser ◽  
D L Finnegan ◽  
A P Summers ◽  
M A Kolmann

Synopsis Evolutionary transitions between habitats have been catalysts for some of the most stunning examples of adaptive diversification, with novel niches and new resources providing ecological opportunity for such radiations. In aquatic animals, transitions from saltwater to freshwater habitats are rare, but occur often enough that in the Neotropics for example, marine-derived fishes contribute noticeably to regional ichthyofaunal diversity. Here, we investigate how morphology has evolved in a group of temperate fishes that contain a marine to freshwater transition: the sculpins (Percomorpha; Cottoidea). We devised a novel method for classifying dietary niche and relating functional aspects of prey to their predators. Coupled with functional measurements of the jaw apparatus in cottoids, we explored whether freshwater sculpins have fundamentally changed their niche after invading freshwater (niche lability) or if they retain a niche similar to their marine cousins (niche conservatism). Freshwater sculpins exhibit both phylogeographical and ecological signals of phylogenetic niche conservatism, meaning that regardless of habitat, sculpins fill similar niche roles in either saltwater or freshwater. Rather than competition guiding niche conservatism in freshwater cottoids, we argue that strong intrinsic constraints on morphological and ecological evolution are at play, contra to other studies of diversification in marine-derived freshwater fishes. However, several intertidal and subtidal sculpins as well as several pelagic freshwater species from Lake Baikal show remarkable departures from the typical sculpin bauplan. Our method of prey categorization provides an explicit, quantitative means of classifying dietary niche for macroevolutionary studies, rather than relying on somewhat arbitrary means used in previous literature.


Author(s):  
Camille J. Macnaughton ◽  
Travis C. Durhack ◽  
Neil J. Mochnacz ◽  
Eva C. Enders

The physiology and behaviour of fish are strongly affected by ambient water temperature. Physiological traits related to metabolism, such as aerobic scope (AS), can be measured across temperature gradients and the resulting performance curve reflects the thermal niche that fish can occupy. We measured AS of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi) at 5, 10, 15, 20, and 22°C and compared temperature preference (Tpref) of the species to non-native Brook Trout, Brown Trout, and Rainbow Trout. Intermittent-flow respirometry experiments demonstrated that metabolic performance of Westslope Cutthroat Trout was optimal at ~15 °C and decreased substantially beyond this temperature, until lethal temperatures at ~25 °C. Adjusted preferred temperatures across species (Tpref) were comparatively high, ranging from 17.8-19.9 °C, with the highest Tpref observed for Westslope Cutthroat Trout. Results suggest that although Westslope Cutthroat Trout is considered a cold-water species, they do not prefer or perform as well in cold water (≤ 10°C), thus, can occupy a warmer thermal niche than previously thought. The metabolic performance curve (AS) can be used to develop species‐specific thermal criteria to delineate important thermal habitats and guide conservation and recovery actions for Westslope Cutthroat Trout.


Sign in / Sign up

Export Citation Format

Share Document