The influence of smallmouth bass (Micropterus dolomieu) predation and habitat comple×ity on the structure of littoral zone fish assemblages

2001 ◽  
Vol 58 (2) ◽  
pp. 342-351 ◽  
Author(s):  
Pamela S.D. MacRae ◽  
Donald A. Jackson
2001 ◽  
Vol 58 (2) ◽  
pp. 342-351 ◽  
Author(s):  
Pamela SD MacRae ◽  
Donald A Jackson

Fish assemblages in small lakes ([Formula: see text]50 ha) in central Ontario were characterized to determine the impact of smallmouth bass (Micropterus dolomieu) predation and habitat complexity on the structure of littoral zone fish assemblages. Data were collected employing minnow traps and visual assessment. Although species richness did not differ between lakes with and without smallmouth bass, species composition and relative abundance did differ. We identified two distinct fish assemblage types: one characterized by small-bodied species, mainly cyprinids, and a second by large-bodied centrarchid species, e.g., smallmouth bass. Smallmouth bass appear to reduce abundance, alter habitat use, and extirpate many small-bodied species such as brook stickleback (Culaea inconstans), fathead minnow (Pimephales promelas), pearl dace (Margariscus margarita), and Phoxinus spp.


1997 ◽  
Vol 54 (9) ◽  
pp. 2007-2013 ◽  
Author(s):  
C Rejwan ◽  
B J Shuter ◽  
M S Ridgway ◽  
N C Collins

Smallmouth bass (Micropterus dolomieu) nests were patchily distributed within the littoral zone of Lake Opeongo at two spatial scales (1 km and 100 m shoreline segments). Nest locations were recorded by snorkelling along 155 and 6.3 km of littoral zone over 4 and 11 years, respectively. The degree of patchiness was greater and occurred more consistently at the 1-km than at the 100-m spatial scale. However, the degree of patchiness was not significantly affected by 200% differences in spawning population size, implying that competitive interactions did not strongly influence nest locations over the study period. High-density nesting areas remained stationary between years at the 1-km and 100-m scales. This suggests that habitat variables having stationary spatial characteristics, influence nest site choice. Since the locations of nest patches are less stationary and less consistent among 100-m than among 1-km scale sites, influential habitat variables at the 100-m scale are either less important to the locations of nests or less stationary from year-to-year in their effects on nest distributions. If stationary nest patches are typical of spawning smallmouth bass in lakes, permanent protection of known patch locations could enhance their reproductive success.


2005 ◽  
Vol 62 (9) ◽  
pp. 2110-2123 ◽  
Author(s):  
Michael G Newbrey ◽  
Michael A Bozek ◽  
Martin J Jennings ◽  
James E Cook

The objective of this study was to quantify the physical characteristics of coarse woody structure (CWS) as fish habitat in a north temperate lake. Sixteen species of fish were observed in submerged CWS habitat. Branching complexity, distance above the bole, area below the bole, distance to other CWS, and water depth around CWS were significantly related to abundance of schooling cyprinids (Cyprinidae), rock bass (Ambloplites rupestris), smallmouth bass (Micropterus dolomieu), bluegill (Lepomis macrochirus), yellow perch (Perca flavescens), and walleye (Sander vitreus). Branching complexity was the most common characteristic of CWS related to richness, diversity, and total adult abundance of fish taxa, but was not correlated with the total lengths of fish found in submerged trees. Branching-complexity values ranged from 1 (simple) to 500 (moderately complex) in the littoral zone; for comparison, a living riparian conifer had a branching-complexity value of over 1000. Most CWS in the littoral zone was composed of simple trees without branching, but fish tended to inhabit CWS with branching-complexity values greater than 45. This study shows the importance of CWS with fine branching as littoral-zone fish habitat.


<em>Abstract.</em>—The present ichthyofauna (1965–2001) of the Wabash River system is compared to that of three periods: presettlement through 1820, 1875–1900, and 1940– 1950. This second largest Ohio River tributary flows freely for 350 mi. However, its environment and watershed have been altered greatly from presettlement times; twothirds has been converted to agriculture, eliminating all prairies and most forests and wetlands. Canals, large and small dams, channelization, and effluents have extinguished 12 fish species, diminished some, and favored others. Thirteen of approximately 175 species are recent, including 3 aliens. Better municipal and industrial waste treatment has improved water quality, but excessive agricultural runoff remains detrimental to many fishes. Degraded habitats exacerbate these problems. Many sensitive species are today either absent or severely reduced in distribution and abundance compared to 50 years ago. Smallmouth bass <em>Micropterus dolomieu </em>has been replaced by largemouth bass <em>M. salmoides </em>or spotted bass <em>M. punctulatus, </em>and few visual piscivores occur except near reservoirs.


<em>Abstract.</em>—Fish assemblages in Atlantic coastal rivers have undergone extensive ecological change in the last two and a half centuries due to human influence, including extirpation of many migratory fish species, such as river herring <em> Alosa </em>spp. and introduction of nonnative piscivores, notably Smallmouth Bass <em> Micropterus dolomieu</em>. Recently, dam removals and fish passage improvements in the Penobscot River, Maine, have allowed river herring to return to reaches of the river that have been inaccessible since the late 19th century. Alosine populations have increased and this trend is anticipated to continue. This may increase forage in the system which could potentially increase growth for Smallmouth Bass, the dominant piscivore. We examined the diet and growth of Smallmouth Bass collected from areas of the Penobscot River watershed with and without access to river herring as prey. We collected 765 Smallmouth Bass throughout 2015, examined the stomach contents of 573 individuals, and found notable differences in diet among three river reaches with common seasonal trends. Juvenile river herring composed an average of 19% (SE = ±6%) of stomach contents by mass from Smallmouth Bass collected in the freshwater tidal area but were rarely observed in the diets upstream. We used estimates from von Bertalanffy growth models to examine differences in growth among reaches and found that asymptotic length was the longest (425 mm TL) in the Tidal reach where access to river herring was unrestricted. We then used these data to predict changes to growth associated with increased access to juvenile river herring prey with bioenergetics models. Results indicated that substituting juvenile river herring for less energy-dense prey (e.g., invertebrates) may lead to increases in seasonal growth throughout the watershed as river herring populations continue to rebound in response to dam removal. Our results provide insight into the diet and growth of Smallmouth Bass in a large New England river, and provide a foundation for future work investigating unfolding changes to these characteristics following recent dam removals.


<em>Abstract.</em>—The Ohio River Valley Water Sanitation Commission (ORSANCO), along with cooperating state and federal agencies, sampled fish assemblages from the lockchambers of Ohio River navigational dams from 1957 to 2001. To date, 377 lockchamber rotenone events have been conducted, resulting in the collection of nearly three million fishes, representing 116 taxa, including 7 hybrids, in 19 families. We observed significant temporal trends in Ohio River fish riverwide at the assemblage, guild, and species levels. Modified index of well-being (MIWB) scores and changes in guild structure indicated significantly (<em>p </em>< 0.05) improving fish assemblages throughout the Ohio River. Quantile regression of the abundance of individual species by year revealed significant declines (<em>p </em>< 0.05) in populations of several pollution-tolerant species (e.g., <em>Ameiurus </em>spp., goldfish <em>Carassius auratus</em>) with time, while some intolerant species (e.g., smallmouth redhorse <em>Moxostoma breviceps, </em>smallmouth bass <em>Micropterus dolomieu, </em>and mooneye <em>Hiodon tergisus</em>) have increased in recent years. In all, 40 of the 116 taxa collected in the lockchamber surveys changed significantly over time. Sixteen species did not change. Sixty species could not be analyzed either because of incomplete data or insufficient abundance. Fish assemblage metrics that would be expected to decrease with improving conditions in the Ohio River (percent tolerant individuals, percent nonindigenous individuals, and percent detritivore individuals) also declined (<em>p </em>< 0.05). These changes coincide with marked improvement of the water quality in the Ohio River over the last 50 years, particularly in the aftermath of the Clean Water Act (1972). Some species and metric responses may also be due to the replacement of the 50 wicket dams by the construction of 18 high-lift dams.


Koedoe ◽  
2001 ◽  
Vol 44 (2) ◽  
Author(s):  
I.A. Russell

Fish assemblages were sampled at six sites in the Breede River in the Bontebok National Park during 1999 and 2000. A total of 380 fish from 12 species was recorded. Indigenous fish collected included one freshwater species (Barbus andrewi), two catodromous species (Anguilla mossambica, Myxus capensis). and three estuarine species (Gilchris- tella aestuaria, Monodactylusfalciformis, Mugil cephalus). Four of the species recorded were aliens (Tinea tinea, Lepomis macrochirus, Micropterus salmoides, Micropterus dolomieu) and two species translocated from other South African rivers (Tilapia sparrmanii, Clarias gariepinus). A further two indigenous species (Sandelia capensis, Pseudobarbus biirchelli) could potentially occur within the park, though the high abundance of alien predators means that there is little chance for recolonisation from tributaries higher in the Breede River system. There is little opportunity to meaningfully conserve most indigenous freshwater fish in Bontebok National Park.


2009 ◽  
Vol 66 (2) ◽  
pp. 212-223 ◽  
Author(s):  
Scott D. Kaufman ◽  
Ed Snucins ◽  
John M. Gunn ◽  
Wayne Selinger

In lake trout ( Salvelinus namaycush ) lakes of northeastern Ontario, Canada, aerial surveys of fishing activity on individual lakes (N = 589) and quantitative gillnet surveys (N = 65) were used to assess the effects of road access on angling effort and the presence of introduced smallmouth bass ( Micropterus dolomieu ). Angling effort, particularly during the open-water season, was highest and often exceeded estimated sustainable levels on lakes with good road access. Approximately 25% of the remote lakes also received excessive pressure during the winter season. Angler numerical responses to lake trout abundance were detected in remote lakes, but not in road-accessible lakes. Smallmouth bass were more prevalent in lakes with road access and human settlement (either cottages or lodges), supporting the theory that they were introduced into these lakes. Lake trout populations were depleted throughout much of the study range. Even without road access or smallmouth bass, lake trout abundance was still 47% lower than in unexploited reference lakes. When bass and (or) road access were present, lake trout abundance decreased by 77%. Remote lake trout populations in this area are clearly vulnerable to the negative impacts of improved access, a vector for both overexploitation and species introductions.


Sign in / Sign up

Export Citation Format

Share Document