Climate influences the effect of fungal decay type on regeneration of Picea jezoensis var. hondoensis seedlings on decaying logs

2020 ◽  
Vol 50 (1) ◽  
pp. 73-79
Author(s):  
Yu Fukasawa ◽  
Yoko Ando ◽  
Satoshi N. Suzuki ◽  
Mineaki Aizawa ◽  
Daisuke Sakuma

Hondo spruce (Picea jezoensis var. hondoensis (Mayr) Rehder)) is separately distributed among several mountainous regions in central Japan as remnant populations of the last glacial period. To identify factors that affect Hondo spruce seedling regeneration on decaying logs, we investigated the relationships between climatic conditions, log properties, including decay type by fungi, and Hondo spruce seedling density on logs using data from seven subalpine Hondo spruce forests in central Japan. The results showed that the presence of soft rot was associated with higher seedling density, and the effect of brown rot in sapwood and white rot in heartwood on the predicted number of spruce seedlings on logs switched from positive to negative with increasing temperature and precipitation. Because soft rot occurs under humid conditions, the use of forest management techniques that increase the number of logs with soft rot in sapwood (e.g., by keeping the forest floor moist) are recommended for the sustainable regeneration of Hondo spruce. However, the relationships between wood decay type and seedling regeneration can also be affected by climate condition and thus are more complex than previously thought.

2017 ◽  
Vol 47 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Y. Fukasawa ◽  
Y. Komagata ◽  
S. Ushijima

Decomposition subsystems have an essential role in forest dynamics but few studies demonstrate the effect of microbial decay traits on seedling regeneration. In the present study, we focused on seedling regeneration on coarse woody material (CWM), which is an important regeneration site for forest tree species, and the effects of wood decay type according to fungal decay preference for wood structural components on seedling colonization. Effects of log properties including wood decay type and other environmental variables on seedling density were evaluated by ordination methods and generalized linear models. In total, 22 woody species were recorded as seedlings on Pinus densiflora logs. By ordination analysis, white rot in heartwood and brown rot in sapwood, as well as canopy openness and log diameter, showed significant association with seedling communities. The factors selected for a generalized linear model for explaining seedling densities of the two dominant seedling species Cryptomeria japonica and P. densiflora included brown rot in sapwood and white rot in heartwood, but the effects were different: a positive effect of brown rot on C. japonica and a negative effect of white rot on P. densiflora. These results suggested that wood decay type could induce niche separation between dominant tree species regenerating on CWM.


IAWA Journal ◽  
1998 ◽  
Vol 19 (2) ◽  
pp. 141-167 ◽  
Author(s):  
Susan E. Anagnost

Light micrographs of the anatomical features of brown rot, white rot and soft rot are presented here to facilitate easy identification of each type of decay in birch and pine. This paper presents the light-microscopic observations made during the course of several broad studies of wood deterioration by fungi. A key aids the identification of brown rot, white rot and soft rot in wood and wood products. Features used for identification include bore hole size and frequency, shape of erosion channels and cavities, cell separations and changes in birefringence as observed on unstained sections with polarized light or differential interference contrast microscopy. Included are descriptions of white-rot and soft-rot erosion patterns at several decay stages.


2021 ◽  
Vol 9 (1) ◽  
pp. 149
Author(s):  
Neha Sahu ◽  
Zsolt Merényi ◽  
Balázs Bálint ◽  
Brigitta Kiss ◽  
György Sipos ◽  
...  

Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using transcriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. While we observed an upregulation of a diverse suite of plant cell wall degrading enzymes, unlike white-rotters, they possess and express an atypical wood-decay repertoire in which pectinases and expansins are enriched, whereas lignin-decaying enzymes (LDEs) are generally downregulated. This combination of wood decay genes resembles the soft-rot of Ascomycota and appears widespread among Basidiomycota that produce a superficial white rot-like decay. These observations are consistent with ancestral soft-rot decay machinery conserved across asco- and Basidiomycota, a gain of efficient lignin-degrading ability in white-rot fungi and repeated, complete, or partial losses of LDE encoding gene repertoires in brown- and secondarily soft-rot fungi.


2010 ◽  
Vol 36 (2) ◽  
pp. 81-85
Author(s):  
Kahoru Matsumoto ◽  
Futoshi Ishiguri ◽  
Kazuya Iizuka ◽  
Shinso Yokota ◽  
Naoto Habu ◽  
...  

To obtain the basic information needed to estimate the degree of decay from compressive strength measured using a Fractometer (CS), relationships between CS and the contents of chemical components were analyzed for Magnolia wood decayed by three types fungi (brown rot, white rot, and soft rot fungi) at various decay levels. Weight loss ratio was significantly, negatively correlated with CS in woods decayed by brown rot and white rot fungi. In addition, a relatively high correlation coefficient was recognized between CS and holocellulose or α-cellulose content, except for wood decayed by soft rot fungus. The results obtained showed that Fractometer can detect the decrease of CS at relatively early stage of decay.


Holzforschung ◽  
2013 ◽  
Vol 67 (7) ◽  
pp. 825-832 ◽  
Author(s):  
Anna-Kaisa Anttila ◽  
Anna Maria Pirttilä ◽  
Hely Häggman ◽  
Anni Harju ◽  
Martti Venäläinen ◽  
...  

Abstract In the last decades, many wood preservatives have been prohibited for their ecotoxicity. The present article is focusing on the conifer-derived condensed tannins as environment-friendly options for the substitution of artificial wood preservatives. Eight different tannin fractions were extracted from spruce cones, spruce barks, and pine cones. The parameters of tannin extraction, such as the methods of purification and concentration of active components in the extracts, have been investigated. The cone and bark extracts were tested for the growth inhibition of eight brown-rot fungi, three white-rot fungi, and four soft-rot fungi in liquid cultures. The cone tannins provided a more efficient fungal growth inhibition than bark tannins. Purification increased the antifungal properties of the extracts. The growth of brown-rot fungi was inhibited by the tannins already at low concentrations. However, the extracts were not effective against the white-rot or soft-rot fungi. More investigation is needed concerning the tannin source and the purification procedure of the extracts before tannins can be considered as an ecologically benign wood preservative.


1983 ◽  
Vol 61 (1) ◽  
pp. 171-173 ◽  
Author(s):  
E. L. Schmidt ◽  
D. W. French

Successive collections of basidiospores, produced in culture from the same hymenial areas of four species of wood decay fungi, were tested for spore germination percentage on malt extract agar under controlled conditions. Spores from white rot fungi retained high germination levels after 5 weeks of spore production, but germination averages for brown rot fungi decreased by more than 50%. Such variation should be considered in wood pathology research using spore germination bioassay.


2020 ◽  
Vol 14 (3) ◽  
pp. 414-419
Author(s):  
Huadong Xu ◽  
Jiedong Wei ◽  
Yanan Di ◽  
Ruixia Qin ◽  
Zonglin Zhen

Wood decay is a releasing process of carbon fixed in the wood. The study on carbon sequestration change caused by decay can provide a theoretical basis for wood preservation and utilization. At present, there are few reports on decay influence on wood carbon emission and no corresponding quantitative data. Therefore, one broad-leaved species, Poplar, and one coniferous species, Korean pine, were selected as the research object, and brown rot fungus (Gloeephyllum trabeum) and white rot fungus (Coriolus versicolor) were used to conduct accelerated decay test on wood samples in the laboratory. During decay, specimens were taken out in different periods to measure chemical properties, mass loss and carbon sequestration. The influence of decay time on carbon sequestration, chemical component and mass loss were then analyzed and the change rule of carbon sequestration were finally studied. The results showed that with increasing decay time, the relative carbon sequestration content of wood affected by different types rot fungi decreased, which was consistent with the change rule of mass loss, indicating that decay would lead to a loss of wood mass and affect its carbon sequestration. However, the absolute carbon sequestration (measured value of carbon sequestration) after brown rot treatment did not decrease but increased slightly, which was different from previous expectation. According to the analysis, with increasing brown rot time, the absolute content and proportion of lignin in wood samples increased slightly, while the corresponding value of holocellulose (including α-cellulose and hemicellulose) decreased significantly. The carbon content of lignin per unit mass is higher than that of holocellulose (Poplar 64.08% > 37.38%; Korean pine 66.37% > 35.94%), resulting in absolute carbon sequestration in wood increases instead of decreases. In conclusion, the change of lignin proportion during the process of brown rot is the decisive factor affecting the change of absolute carbon sequestration. This study focused on two aspects of wood decay and wood carbon sequestration, systematically analyzed the change rule and internal mechanism of wood carbon sequestration with the increase of wood decay degree, and accumulated basic data for wood carbon emission reduction and wood prevention.


2010 ◽  
Vol 76 (11) ◽  
pp. 3599-3610 ◽  
Author(s):  
Amber Vanden Wymelenberg ◽  
Jill Gaskell ◽  
Michael Mozuch ◽  
Grzegorz Sabat ◽  
John Ralph ◽  
...  

ABSTRACT Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.


2014 ◽  
Vol 104 (8) ◽  
pp. 851-858 ◽  
Author(s):  
Angela Roccotelli ◽  
Leonardo Schena ◽  
Simona M. Sanzani ◽  
Santa O. Cacciola ◽  
Saveria Mosca ◽  
...  

The characterization of Basidiomycetes associated with wood rots in commercial citrus orchards in southern Italy revealed that both white and brown rot fungi are implicated in this disease. Fomitiporia mediterranea was the most prevalent species causing a white rot, followed by Fomitopsis sp. which, by contrast, was associated with brown rot wood decay. Furthermore, Phellinus spp. and other nonidentified basidiomycetous fungi showing genetic affinity with the genera Phellinus and Coniophora were occasionally isolated. Artificial inoculations on lemon (Citrus limon) branches showed a faster wood colonization by Fomitopsis sp. compared with F. mediterranea, indicating that the former species as a potentially serious pathogen of citrus trees. The analysis of F. mediterranea internal transcribed spacer (ITS) sequences revealed a high level of genetic variability, with 13 genotypes which were both homozygous (6 genotypes) and heterozygous (7 genotypes). The presence of heterozygous genomes based on ITS sequences has never been reported before for F. mediterranea. This, together with the high frequency of basidiomata on infected wood, unambiguously confirms the outcrossing nature of reproduction in F. mediterranea and the primary role of basidiospores in the dissemination of inoculum. Similarly, high genetic variability was observed analyzing Fomitopsis sp. Because basidiomata of this fungus have not been observed on citrus trees, it can be hypothesized that basidiospores are produced on alternative host plants.


Sign in / Sign up

Export Citation Format

Share Document