scholarly journals Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species

2021 ◽  
Vol 9 (1) ◽  
pp. 149
Author(s):  
Neha Sahu ◽  
Zsolt Merényi ◽  
Balázs Bálint ◽  
Brigitta Kiss ◽  
György Sipos ◽  
...  

Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using transcriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. While we observed an upregulation of a diverse suite of plant cell wall degrading enzymes, unlike white-rotters, they possess and express an atypical wood-decay repertoire in which pectinases and expansins are enriched, whereas lignin-decaying enzymes (LDEs) are generally downregulated. This combination of wood decay genes resembles the soft-rot of Ascomycota and appears widespread among Basidiomycota that produce a superficial white rot-like decay. These observations are consistent with ancestral soft-rot decay machinery conserved across asco- and Basidiomycota, a gain of efficient lignin-degrading ability in white-rot fungi and repeated, complete, or partial losses of LDE encoding gene repertoires in brown- and secondarily soft-rot fungi.

Author(s):  
Neha Sahu ◽  
Zsolt Merényi ◽  
Balázs Bálint ◽  
Brigitta Kiss ◽  
György Sipos ◽  
...  

AbstractThe genus Armillaria spp. (Fungi, Basidiomycota) includes devastating pathogens of temperate forests and saprotrophs that decay wood. Pathogenic and saprotrophic Armillaria species can efficiently colonize and decay woody substrates, however, mechanisms of wood penetration and colonization are poorly known. We assayed the colonization and decay of autoclaved spruce roots using the conifer-specialists Armillaria ostoyae and A. cepistipes using transcriptomic and proteomic data. Transcript and protein levels were altered more extensively in the saprotrophic A. cepistipes than in the pathogenic A. ostoyae and in invasive mycelia of both species compared to their rhizomorphs. Diverse suites of carbohydrate-active enzyme genes (CAZymes), in particular pectinolytic ones and expansins, were upregulated in both species, whereas ligninolytic genes were mostly downregulated. Our gene expression data, together with previous comparative genomic and decay-chemistry analyses suggest that wood decay by Armillaria differs from that of typical white-rot fungi and shows features resembling soft rot. We propose that Armillaria species have modified the ancestral white-rot machinery so that it allows for selective ligninolysis based on environmental conditions and/or host types.


2010 ◽  
Vol 36 (2) ◽  
pp. 81-85
Author(s):  
Kahoru Matsumoto ◽  
Futoshi Ishiguri ◽  
Kazuya Iizuka ◽  
Shinso Yokota ◽  
Naoto Habu ◽  
...  

To obtain the basic information needed to estimate the degree of decay from compressive strength measured using a Fractometer (CS), relationships between CS and the contents of chemical components were analyzed for Magnolia wood decayed by three types fungi (brown rot, white rot, and soft rot fungi) at various decay levels. Weight loss ratio was significantly, negatively correlated with CS in woods decayed by brown rot and white rot fungi. In addition, a relatively high correlation coefficient was recognized between CS and holocellulose or α-cellulose content, except for wood decayed by soft rot fungus. The results obtained showed that Fractometer can detect the decrease of CS at relatively early stage of decay.


Holzforschung ◽  
2013 ◽  
Vol 67 (7) ◽  
pp. 825-832 ◽  
Author(s):  
Anna-Kaisa Anttila ◽  
Anna Maria Pirttilä ◽  
Hely Häggman ◽  
Anni Harju ◽  
Martti Venäläinen ◽  
...  

Abstract In the last decades, many wood preservatives have been prohibited for their ecotoxicity. The present article is focusing on the conifer-derived condensed tannins as environment-friendly options for the substitution of artificial wood preservatives. Eight different tannin fractions were extracted from spruce cones, spruce barks, and pine cones. The parameters of tannin extraction, such as the methods of purification and concentration of active components in the extracts, have been investigated. The cone and bark extracts were tested for the growth inhibition of eight brown-rot fungi, three white-rot fungi, and four soft-rot fungi in liquid cultures. The cone tannins provided a more efficient fungal growth inhibition than bark tannins. Purification increased the antifungal properties of the extracts. The growth of brown-rot fungi was inhibited by the tannins already at low concentrations. However, the extracts were not effective against the white-rot or soft-rot fungi. More investigation is needed concerning the tannin source and the purification procedure of the extracts before tannins can be considered as an ecologically benign wood preservative.


2020 ◽  
Vol 50 (1) ◽  
pp. 73-79
Author(s):  
Yu Fukasawa ◽  
Yoko Ando ◽  
Satoshi N. Suzuki ◽  
Mineaki Aizawa ◽  
Daisuke Sakuma

Hondo spruce (Picea jezoensis var. hondoensis (Mayr) Rehder)) is separately distributed among several mountainous regions in central Japan as remnant populations of the last glacial period. To identify factors that affect Hondo spruce seedling regeneration on decaying logs, we investigated the relationships between climatic conditions, log properties, including decay type by fungi, and Hondo spruce seedling density on logs using data from seven subalpine Hondo spruce forests in central Japan. The results showed that the presence of soft rot was associated with higher seedling density, and the effect of brown rot in sapwood and white rot in heartwood on the predicted number of spruce seedlings on logs switched from positive to negative with increasing temperature and precipitation. Because soft rot occurs under humid conditions, the use of forest management techniques that increase the number of logs with soft rot in sapwood (e.g., by keeping the forest floor moist) are recommended for the sustainable regeneration of Hondo spruce. However, the relationships between wood decay type and seedling regeneration can also be affected by climate condition and thus are more complex than previously thought.


1983 ◽  
Vol 61 (1) ◽  
pp. 171-173 ◽  
Author(s):  
E. L. Schmidt ◽  
D. W. French

Successive collections of basidiospores, produced in culture from the same hymenial areas of four species of wood decay fungi, were tested for spore germination percentage on malt extract agar under controlled conditions. Spores from white rot fungi retained high germination levels after 5 weeks of spore production, but germination averages for brown rot fungi decreased by more than 50%. Such variation should be considered in wood pathology research using spore germination bioassay.


Author(s):  
Aydan Atalar ◽  
Nurcan Çetinkaya

The efforts to break down the lignocellulosic complex found in the cell wall of straws, besides digestible cellulose and hemicellulose by rumen fermentation, improvement of straw digestibility by the degradation of indigestible lignin fraction of complex by using of biotechnological methods is one of the focus areas of animal nutritionists in recent years. Biological method sare prefer redover other methods due to the environmental friendliness. In the biological treatment methods of lignocellulosic complex, biodiversity of bacteria, enzymes and fungi gives opportunity to select lignin degrading species. Mycobacterium, Arthrobacter and Flavobacterium genre bacteria are used to degrade lignin by bacterial treatment. Lignocellulolytic enzymes isolated from different varieties of fungi are used in enzyme treatment. There are 3 genres of fungus that are white, Brown and soft rot in fungal treatments. Brown rot fungi prefer ably attack cellulose and hemicelluloses, but not lignin. White rot fungi attack the lignin and break up lignol bonds and aromatic ring. White rot fungi break down polysaccharides with hydrolytic enzymes such as cellulase, xylanase, and lignin with oxidative ligninolytic enzymes such as lignin peroxidase and laccase. Because of the fact that the microorganisms that can break down the lignocellulosic materials are the fungi and the cost is low, the application of white rot fungi is possible. In this paper, improvement the lignocellulosic comlex digestibility of straw by biological treatment with the advantage of biodiversity is discussed.


BioResources ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 606-614 ◽  
Author(s):  
Jing Wang ◽  
Jian Li ◽  
Shujun Li ◽  
Camille Freitag ◽  
J. J. Morrell

Three extractives from China-fir were obtained by a sequential extraction processes with hexane, ethyl acetate, and methanol. The components of the three extractives were analyzed: (1) The gas chromatography-mass spectrometry (GC-MS) analysis showed that in addition to the presence of cedrol, naphthalenes comprised a relatively large percentage of both the hexane extract (10.39%) and the ethyl acetate extract (9.43%). (2) Total phenolic contents analysis showed that phenols took up 6.66 % of the ethyl acetate extract and 22.8% of the methanol extract. All extracts, even with low concentrations, presented fair antifungal activities against two white-rot fungi, Trametes versicolor and Irpex lacteusand two brown-rot fungi, Postia placenta and Gloeophyllum trabeum. Cedrol and naphthalenes were partly responsible for the bioactivities. The synergistic effect of phenols and antifungal compounds also contributed to the wood decay resistance.


2000 ◽  
Vol 66 (11) ◽  
pp. 4725-4734 ◽  
Author(s):  
Claudia A. Jasalavich ◽  
Andrea Ostrofsky ◽  
Jody Jellison

ABSTRACT We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.


2013 ◽  
Vol 47 (10) ◽  
pp. 1239-1250 ◽  
Author(s):  
Tri Joko ◽  
Ahmad Subandi ◽  
Nanda Kusumandari ◽  
Arif Wibowo ◽  
Achmadi Priyatmojo

Sign in / Sign up

Export Citation Format

Share Document