Long-term effects of prescribed burning, tree retention, and browsing on deciduous tree recruitment in European boreal forests

Author(s):  
Alwin A. Hardenbol ◽  
Michael den Herder ◽  
Jari Kouki

Silvicultural practices, effective fire suppression, and increased browser densities have profoundly altered structural diversity in boreal forests. Prescribed burning and retention forestry may counteract losses in structural diversity in managed forests, by maintaining higher deciduous admixture. We constructed an experiment on 18 sites with three types of timber harvesting (uncut, cut with retention, and clearcut) and burned half these sites. Subsequently, we established a herbivore treatment with three compartments (unfenced, fenced excluding moose (Alces alces), and fenced excluding moose and hares (Lepus spp.)). In these compartments, we planted rowan (Sorbus aucuparia), European aspen (Populus tremula), and silver birch (Betula pendula) seedlings, and monitored these for 17 years. Birch and rowan mortality were lower on cut and burned sites, with retention further enhancing birch survival on these sites. Retention without burning did not lower seedling mortality of any tree species. While browsing resulted in greater mortality on cut sites, burning appeared to greatly reduce browsing on birch and rowan. On mature uncut sites, seedlings of all tree species exhibited high mortality. Our findings show that deciduous tree recruitment can be improved through prescribed burning, particularly for birch and rowan, and that browsing impacts on deciduous trees depend on forest age.

Silva Fennica ◽  
2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Alwin Hardenbol ◽  
Anton Kuzmin ◽  
Lauri Korhonen ◽  
Pasi Korpelainen ◽  
Timo Kumpula ◽  
...  

Current remote sensing methods can provide detailed tree species classification in boreal forests. However, classification studies have so far focused on the dominant tree species, with few studies on less frequent but ecologically important species. We aimed to separate European aspen ( tremula L.), a biodiversity-supporting tree species, from the more common species in European boreal forests ( L., [L.] Karst., spp.). Using multispectral drone images collected on five dates throughout one thermal growing season (May–September), we tested the optimal season for the acquisition of mono-temporal data. These images were collected from a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented crowns manually and automatically and classified the species by linear discriminant analysis. The highest overall classification accuracy (95%) for the four species as well as the highest classification accuracy for aspen specifically (user’s accuracy of 97% and a producer’s accuracy of 96%) were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy was achieved on 27 September during the autumn senescence period. This is potentially caused by high intraspecific variation in aspen autumn coloration but may also be related to our date of acquisition. Our findings indicate that multispectral drone images collected in spring can be used to locate and classify less frequent tree species highly accurately. The temporal variation in leaf and canopy appearance can alter the detection accuracy considerably.PopulusPinus sylvestrisPicea abiesBetula


2009 ◽  
Vol 39 (4) ◽  
pp. 712-722 ◽  
Author(s):  
Michael den Herder ◽  
Jari Kouki ◽  
Vesa Ruusila

Forest management, fire, and herbivores are the major factors affecting regeneration of deciduous trees in boreal forests. In a large-scale experiment, we manipulated the use of prescribed burning, the level of green-tree retention and the presence of moose ( Alces alces L.) and hare ( Lepus timidus L. and Lepus europaeus Pallas) to study their effects on early regeneration of three native pioneer tree species, i.e., rowan ( Sorbus aucuparia L.), aspen ( Populus tremula L.), and silver birch ( Betula pendula Roth). Green-tree retention enhanced survival of all tested tree species. Prescribed burning enhanced the survival rate of birch and rowan, but aspen survival was only enhanced by burning on clearcuts and areas with 50 m3/ha of retention trees. Excluding moose enhanced rowan growth and birch survival. Aspen growth and survival was enhanced when both moose and hare were excluded. Seedlings were most frequently browsed on clearcuts, and most seedling mortality was caused by voles or hare. At low densities, the effect of moose on pioneer trees may be smaller than that of other herbivores or the fire–management regime. Considering the large number of species depending on pioneer trees, the results support the use of tree retention and fire as useful management alternatives not only to promote biodiversity but also to enhance regeneration of deciduous trees and reduce herbivore damage.


2020 ◽  
Author(s):  
Timo Kumpula ◽  
Arto Viinikka ◽  
Janne Mäyrä ◽  
Anton Kuzmin ◽  
Pekka Hurskainen ◽  
...  

<p>Importance of biodiversity is increasingly highlighted as an essential part of sustainable forest management. As direct monitoring of biodiversity is not possible, proxy variables have been used to indicate site’s species richness and quality. In boreal forests, European aspen (Populus tremula L.) is one of the most significant proxies for biodiversity. Aspen is a keystone species, hosting a range of endangered species, hence having a high importance in maintaining forest biodiversity. Still, reliable and fine-scale spatial data on aspen occurrence remains scarce and incomprehensive. Although remote sensing-based species classification has been used for decades for the needs of forestry, commercially less significant species (e.g., aspen) have typically been excluded from the studies. This creates a need for developing general methods for tree species classification covering also ecologically significant species.</p><p> </p><p>Our study area, located in Evo, Southern Finland, covers approximately 83km<sup>2</sup>, and contains both managed and protected southern boreal forests. The main tree species in the area are Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), with relatively sparse and scattered occurrence of aspen. Along with a thorough field data, airborne hyperspectral and LiDAR data have been acquired from the study area. We also collected ultra high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors.</p><p> </p><p>Our aim is to gather fundamental data on hyperspectral and multispectral species classification, that can be utilized to produce detailed aspen data at large scale. For this, we first analyze species detection at tree-level. We test and compare different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks), with specific emphasis on accurate and feasible aspen detection. The results will show, how accurately aspen can be detected from the forest canopy, and which bandwidths have the largest importance for aspen. This information can be utilized for aspen detection from satellite images at large scale.</p>


1995 ◽  
Vol 95 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Elena Toll ◽  
Federico J. Castillo ◽  
Pierre Crespi ◽  
Michele Crevecoeur ◽  
Hubert Greppin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Fujita

AbstractThis study examined the mechanisms of facilitation and importance of seed dispersal during establishment of forest tree species in an Afrotropical woodland. Seedling survival of Syzygium guineense ssp. afromontanum was monitored for 2.5 years at four different microsites in savannah woodland in Malawi (southeastern Africa) under Ficus natalensis (a potential nurse plant), Brachystegia floribunda (a woodland tree), Uapaca kirkiana (a woodland tree), and at a treeless site. The number of naturally established forest tree seedlings in the woodland was also counted. Additionally, S. guineense ssp. afromontanum seed deposition was monitored at the four microsites. Insect damage (9% of the total cause of mortality) and trampling by ungulates (1%) had limited impact on seedling survival in this area. Fire (43%) was found to be the most important cause of seedling mortality and fire induced mortality was especially high under U. kirkiana (74%) and at treeless site (51%). The rate was comparatively low under F. natalensis (4%) and B. floribunda (23%), where fire is thought to be inhibited due to the lack of light-demanding C4 grasses. Consequently, seedling survival under F. natalensis and B. floribunda was higher compared with the other two microsites. The seedling survival rate was similar under F. natalensis (57%) and B. floribunda (59%). However, only a few S. guineense ssp. afromontanum seedlings naturally established under B. floribunda (25/285) whereas many seedlings established under F. natalensis (146/285). These findings indicate that the facilitative mechanism of fire suppression is not the only factor affecting establishment. The seed deposition investigation revealed that most of the seeds (85%) were deposited under F. natalensis. As such, these findings suggest that in addition to fire suppression, dispersal limitations also play a role in forest-savannah dynamics in this region, especially at the community level.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Purhonen Jenna ◽  
Abrego Nerea ◽  
Komonen Atte ◽  
Huhtinen Seppo ◽  
Kotiranta Heikki ◽  
...  

AbstractThe general negative impact of forestry on wood-inhabiting fungal diversity is well recognized, yet the effect of forest naturalness is poorly disentangled among different fungal groups inhabiting dead wood of different tree species. We studied the relationship between forest naturalness, log characteristics and diversity of different fungal morpho-groups inhabiting large decaying logs of similar quality in spruce dominated boreal forests. We sampled all non-lichenized fruitbodies from birch, spruce, pine and aspen in 12 semi-natural forest sites of varying level of naturalness. The overall fungal community composition was mostly determined by host tree species. However, when assessing the relevance of the environmental variables separately for each tree species, the most important variable varied, naturalness being the most important explanatory variable for fungi inhabiting pine and aspen. More strikingly, the overall species richness increased as the forest naturalness increased, both at the site and log levels. At the site scale, the pattern was mostly driven by the discoid and pyrenoid morpho-groups inhabiting pine, whereas at the log scale, it was driven by pileate and resupinate morpho-groups inhabiting spruce. Although our study demonstrates that formerly managed protected forests serve as effective conservation areas for most wood-inhabiting fungal groups, it also shows that conservation planning and management should account for group- or host tree -specific responses.


2006 ◽  
Vol 36 (5) ◽  
pp. 1218-1235 ◽  
Author(s):  
Steven G Newmaster ◽  
F Wayne Bell ◽  
Christopher R Roosenboom ◽  
Heather A Cole ◽  
William D Towill

Plantations have been claimed to be "monocultures", or "biological deserts". We investigated these claims in the context of a long-term study on plant diversity within plantations with different indigenous tree species, spacings, and soil types that were compared with 410 native stands. Soil type had no influence on plantation species diversity or abundance, and wider spacing resulted in higher richness, lower woody plant abundance, slightly higher cover of herbaceous plants, and large increases in cryptogam cover. We also found a canopy species × spacing interaction effect, where the impact of increased spacing on understory vegetation was more pronounced in spruce than in pine plantations. The dynamic community interactions among species of feathermoss appear to be in response to the physical impediment from varying amounts of needle rain from the different tree species. High light interception and needle fall were negatively correlated with understory plant diversity, as was lack of structural diversity. This study indicates that through afforestation efforts agricultural lands can be restored to productive forests that can harbour nearly one-half of the plant species found in equivalent natural forests within the same geographic region in as little as 50 years. We recommend applying afforestation using indigenous conifer species as a first step towards rehabilitating conifer forests that have been converted to agriculture and subsequently abandoned.


2006 ◽  
Vol 36 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Julia Koricheva ◽  
Harri Vehviläinen ◽  
Janne Riihimäki ◽  
Kai Ruohomäki ◽  
Pekka Kaitaniemi ◽  
...  

Pure forest stands are widely believed to be more prone to pest outbreaks and disease epidemics than mixed stands, leading to recommendations of using stand diversification as a means of controlling forest pests and pathogens. We review the existing evidence concerning the effects of stand tree-species diversity on pests and pathogens in forests of the boreal zone. Experimental data from published studies provide no overall support for the hypothesis that diversification of tree stands can prevent pest outbreaks and disease epidemics. Although beneficial effects of tree-species diversity on stand vulnerability are observed in some cases, in terms of reductions in damage, these effects are not consistent over time and space and seem to depend more on tree-species composition than on tree-species diversity per se. In addition, while mixed stands may reduce the densities of some specialized herbivores, they may be more attractive to generalist herbivores. Given that generalist mammalian herbivores cause considerable tree mortality during the early stages of stand establishment in boreal forests, the net effect of stand diversification on stand damage is unlikely to be positive.


Sign in / Sign up

Export Citation Format

Share Document