Differential colonization by bioprospected rhizobial bacteria associated with common bean in different cropping systems

2017 ◽  
Vol 63 (8) ◽  
pp. 682-689
Author(s):  
Josiele Polzin de Oliveira-Francesquini ◽  
Mariangela Hungria ◽  
Daiani Cristina Savi ◽  
Chirlei Glienke ◽  
Rodrigo Aluizio ◽  
...  

In this study, we evaluated the diversity of rhizobia isolated from root nodules on common bean (Phaseolus vulgaris) derived from Andean and Mesoamerican centers and grown under field and greenhouse conditions. Genetic characterization of isolates was performed by sequencing analyses of the 16S rRNA gene and 2 housekeeping genes, recA and glnII, and by the amplification of nifH. Symbiotic efficiency was evaluated by examining nodulation, plant biomass production, and plant nitrogen (N) accumulation. The influence of the environment was observed in nodulation capacity, where Rhizobium miluonense was dominant under greenhouse conditions and the Rhizobium acidisoli group prevailed under field conditions. However, strain LGMB41 fit into a separate group from the type strain of R. acidisoli in terms of multilocus phylogeny, implying that it could belong to a new species. Rhizobium miluonense LGMB73 showed the best symbiotic efficiency performance, i.e., with the highest shoot-N content (77.7 mg/plant), superior to the commercial standard strain (56.9 mg/plant). Biodiversity- and bioprospecting-associated studies are important to better understand ecosystems and to develop more effective strategies to improve plant growth using a N-fixation process.

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 397 ◽  
Author(s):  
Rui Zhang ◽  
Cong Wang ◽  
Wenzhi Teng ◽  
Jing Wang ◽  
Xiaochen Lyu ◽  
...  

The soybean (Glycine max L. Merr.) is a crop with a high demand for nitrogen (N). The root nodules that form in soybeans can fix atmospheric N effectively, yet the goal of achieving high yields cannot be met by relying solely on nodule-fixed N. Nonetheless, the application of N fertilizer may inhibit nodule formation and biological N fixation (BNF), but the underpinning mechanisms are still unclear. In this study, we grafted the roots of non-nodulated soybeans onto nodulated soybeans to generate plants with dual root system. The experiment included three treatments conducted under sand culture conditions with NO 3 − and NH 4 + as N sources. Treatment I: The non-nodulated roots on one side received 50 mg·L−1 15 NO 3 − or 15NH4+, and the nodulated roots on the other side were not treated. Treatment II: The non-nodulated roots received 50 mg·L−1 15 NO 3 − or 15 NH 4 + , and the nodulated roots received 50 mg·L−1 14 NO 3 − or 14 NH 4 + . Treatment III: Both non-nodulated and nodulated roots received 50 mg·L−1 15 NO 3 − or 15 NH 4 + . The results showed the following: (1) Up to 81.5%–87.1% of the N absorbed by the soybean roots and fixed by the root nodules was allocated to shoot growth, leaving 12.9%–18.5% for root and nodule growth. Soybeans preferentially used fertilizer N in the presence of a NO 3 − or NH 4 + supply. After the absorbed fertilizer N and nodule-fixed N was transported to the shoots, a portion of it was redistributed to the roots and nodules. The N required for root growth was primarily derived from the NO 3 − or NH 4 + assimilated by the roots and the N fixed by the nodules, with a small portion translocated from the shoots. The N required for nodule growth was primarily contributed by nodule-fixed N with a small portion translocated from the shoots, whereas the NO 3 − or NH 4 + that was assimilated by the roots was not directly supplied to the nodules. (2) Based on observations of the shoots and one side of the roots and nodules in the dual root system as an N translocation system, we proposed a method for calculating the N translocation from soybean shoots to roots and nodules during the R1–R5 stages based on the difference in the 15N abundance. Our calculations showed that when adding N at a concentration of 50 mg·L−1, the N translocated from the shoots during the R1–R5 stages accounts for 29.6%–52.3% of the N accumulation in nodulated roots (Rootn) and 9.4%–16.6% of the N accumulation in Nodulen of soybeans. Through the study of this experiment, the absorption, distribution and redistribution characteristics of fertilizer N and root nodule N fixation in soybean can be clarified, providing a theoretical reference for analyzing the mechanisms of the interaction between fertilizer N and nodule-fixed N.


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 3950-3957 ◽  
Author(s):  
Sofie E. De Meyer ◽  
Margo Cnockaert ◽  
Julie K. Ardley ◽  
Garth Maker ◽  
Ron Yates ◽  
...  

Seven Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Burkholderia , with the representative strain WSM5005T being most closely related to Burkholderia tuberum (98.08 % sequence similarity). Additionally, these strains formed a distinct group in phylogenetic trees based on the housekeeping genes gyrB and recA. Chemotaxonomic data including fatty acid profiles and analysis of respiratory quinones supported the assignment of the strains to the genus Burkholderia . Results of DNA–DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from the closest species of the genus Burkholderia with a validly published name. Therefore, these strains represent a novel species for which the name Burkholderia sprentiae sp. nov. (type strain WSM5005T = LMG 27175T = HAMBI 3357T) is proposed.


2017 ◽  
Vol 84 (2) ◽  
Author(s):  
Ifeoma N. Chidebe ◽  
Sanjay K. Jaiswal ◽  
Felix D. Dakora

ABSTRACTCowpea derives most of its N nutrition from biological nitrogen fixation (BNF) via symbiotic bacteroids in root nodules. In Sub-Saharan Africa, the diversity and biogeographic distribution of bacterial microsymbionts nodulating cowpea and other indigenous legumes are not well understood, though needed for increased legume production. The aim of this study was to describe the distribution and phylogenies of rhizobia at different agroecological regions of Mozambique using PCR of the BOX element (BOX-PCR), restriction fragment length polymorphism of the internal transcribed spacer (ITS-RFLP), and sequence analysis of ribosomal, symbiotic, and housekeeping genes. A total of 122 microsymbionts isolated from two cowpea varieties (IT-1263 and IT-18) grouped into 17 clades within the BOX-PCR dendrogram. The PCR-ITS analysis yielded 17 ITS types for the bacterial isolates, while ITS-RFLP analysis placed all test isolates in six distinct clusters (I to VI). BLASTnsequence analysis of 16S rRNA and four housekeeping genes (glnII,gyrB,recA, andrpoB) showed their alignment withRhizobiumandBradyrhizobiumspecies. The results revealed a group of highly diverse and adapted cowpea-nodulating microsymbionts which includedBradyrhizobium pachyrhizi,Bradyrhizobium arachidis,Bradyrhizobium yuanmingense, and a novelBradyrhizobiumsp., as well asRhizobium tropici,Rhizobium pusense, andNeorhizobium galegaein Mozambican soils. Discordances observed in single-gene phylogenies could be attributed to horizontal gene transfer and/or subsequent recombinations of the genes. Natural deletion of 60 bp of thegyrBregion was observed in isolate TUTVU7; however, this deletion effect on DNA gyrase function still needs to be confirmed. The inconsistency ofnifHwith core gene phylogenies suggested differences in the evolutionary history of both chromosomal and symbiotic genes.IMPORTANCEA diverse group of bothBradyrhizobiumandRhizobiumspecies responsible for cowpea nodulation in Mozambique was found in this study. Future studies could prove useful in evaluating these bacterial isolates for symbiotic efficiency and strain competitiveness in Mozambican soils.


2005 ◽  
Vol 18 (10) ◽  
pp. 1061-1068 ◽  
Author(s):  
Philippe Jourand ◽  
Adeline Renier ◽  
Sylvie Rapior ◽  
Sergio Miana de Faria ◽  
Yves Prin ◽  
...  

Some rare leguminous plants of the genus Crotalaria are specifically nodulated by the methylotrophic bacterium Methylobacterium nodulans. In this study, the expression and role of bacterial methylotrophy were investigated during symbiosis between M. nodulans, strain ORS 2060T, and its host legume, Crotalaria podocarpa. Using lacZ fusion to the mxaF gene, we showed that the methylotroph genes are expressed in the root nodules, suggesting methylotrophic activity during symbiosis. In addition, loss of the bacterial methylotrophic function significantly affected plant development. Indeed, inoculation of M. nodulans nonmethylotroph mutants in C. podocarpa decreased the total root nodule number per plant up to 60%, decreased the whole-plant nitrogen fixation capacity up to 42%, and reduced the total dry plant biomass up to 46% compared with the wild-type strain. In contrast, inoculation of the legume C. podocarpa with nonmethylotrophic mutants complemented with functional mxa genes restored the symbiotic wild phenotype. These results demonstrate the key role of methylotrophy during symbiosis between M. nodulans and C. podocarpa.


2011 ◽  
Vol 61 (11) ◽  
pp. 2582-2588 ◽  
Author(s):  
Fang Wang ◽  
En Tao Wang ◽  
Li Juan Wu ◽  
Xin Hua Sui ◽  
Ying Li ◽  
...  

Four bacterial strains isolated from root nodules of Phaseolus vulgaris, Mimosa pudica and Indigofera spicata plants grown in the Yunnan province of China were identified as a lineage within the genus Rhizobium according to the analysis of 16S rRNA gene sequences, sharing most similarity with Rhizobium lusitanum P1-7T (99.1 % sequence similarity) and Rhizobium rhizogenes IAM 13570T (99.0 %). These strains also formed a distinctive group from the reference strains for defined species of the genus Rhizobium in a polyphasic approach, including the phylogenetic analyses of the 16S rRNA gene and housekeeping genes (recA, atpD, glnII), DNA–DNA hybridization, BOX-PCR fingerprinting, phenotypic characterization, SDS-PAGE of whole-cell proteins, and cellular fatty acid profiles. All the data obtained in this study suggested that these strains represent a novel species of the genus Rhizobium, for which the name Rhizobium vallis sp. nov. is proposed. The DNA G+C content (mol%) of this species varied between 60.9 and 61.2 (T m). The type strain of R. vallis sp. nov. is CCBAU 65647T ( = LMG 25295T  = HAMBI 3073T), which has a DNA G+C content of 60.9 mol% and forms effective nodules on Phaseolus vulgaris.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3419-3426 ◽  
Author(s):  
Sofie E. De Meyer ◽  
Heng Wee Tan ◽  
Peter B. Heenan ◽  
Mitchell Andrews ◽  
Anne Willems

In total 14 strains of Gram-stain-negative, rod-shaped bacteria were isolated from Sophora longicarinata and Sophora microphylla root nodules and authenticated as rhizobia on these hosts. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, and the strains from S. longicarinata were most closely related to Mesorhizobium amorphae ACCC 19665T (99.8–99.9 %), Mesorhizobium huakuii IAM 14158T (99.8–99.9 %), Mesorhizobium loti USDA 3471T (99.5–99.9 %) and Mesorhizobium septentrionale SDW 014T (99.6–99.8 %), whilst the strains from S. microphylla were most closely related to Mesorhizobium ciceri UPM-Ca7T (99.8–99.9 %), Mesorhizobium qingshengii CCBAU 33460T (99.7 %) and Mesorhizobium shangrilense CCBAU 65327T (99.6 %). Additionally, these strains formed two distinct groups in phylogenetic trees of the housekeeping genes glnII, recA and rpoB. Chemotaxonomic data, including fatty acid profiles, supported the assignment of the strains to the genus Mesorhizobium and allowed differentiation from the closest neighbours. Results of DNA–DNA hybridizations, MALDI-TOF MS analysis, ERIC-PCR, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their closest neighbouring species. Therefore, the strains isolated from S. longicarinata and S. microphylla represent two novel species for which the names Mesorhizobium waimense sp. nov. (ICMP 19557T = LMG 28228T = HAMBI 3608T) and Mesorhizobium cantuariense sp. nov. (ICMP 19515T = LMG 28225T = HAMBI 3604T), are proposed respectively.


2021 ◽  
Vol 34 (1) ◽  
pp. 108-118
Author(s):  
FÁBIO LUIZ CHECCHIO MINGOTTE ◽  
FÁBIO TIRABOSCHI LEAL ◽  
MARCELA MIDORI YADA DE ALMEIDA ◽  
ORLANDO FERREIRA MORELLO ◽  
TATIANA PAGAN LOEIRO DA CUNHA-CHIAMOLERA ◽  
...  

ABSTRACT Determining nitrogen (N) accumulation and export by common bean as a function of straw and of the splitting of this nutrient is very important, aiming at the management and sustainability of agricultural systems. This study aimed to determine the N accumulation and export by common bean as a function of Zea mays and Urochloa ruziziensis grass straw (maize, maize/U. ruziziensis intercropping and U. ruziziensis) and splitting of top-dressing N fertilization. The experiment was conducted in Jaboticabal-SP-Brazil, during the 2012/13 crop season, in a Red Eutrophic Oxisol (Eutrudox) in no-tillage under irrigation. The experimental design was a randomized block with split plots with four replicates, totaling 120 subplots sized in 25m2 each. The plots consisted of the cropping systems prior to common bean: maize, maize/ U. ruziziensis intercropping and U. ruziziensis. The subplots were composed of ten top-dressing N fertilization splitting schemes (NS) at the phenological stages V3, V4 and R5 in different combinations. Common bean grain yield differs among cropping systems and as a function of top-dressed N split application. U. ruziziensis grass as single crop promotes greater N accumulation in common bean shoots compared to maize and its intercropping with U. ruziziensis grass. Regardless the cropping system, top-dressing N application in a single dose (90 kg ha-1) at V4 leads to similar accumulations and exports to those found in the absence of N fertilization. Splitting schemes with N application at the R5 stage increase the exports of this nutrient by common bean in succession to maize and its intercropping with U. ruziziensis grass.


2019 ◽  
Vol 17 (1) ◽  
pp. 11-18
Author(s):  
Nikolai A. Provorov ◽  
Olga P. Onishchuk

Expression of quantitative traits characterizing the N2-fixing symbiosis of nodule bacteria and leguminous plants is associated with operation of the evolutionary derived polygenic systems controlling the symbiotic efficiency (SE) (impact of inoculation on the plant productivity) and nodulation competitiveness (NC) (formation of nodules by rhizobia under mixed inoculation). Optimization of balance between positive and negative symbiotic regulators aimed at an increase of nitrogenase activity and at a complete allocation of its products into the plant metabolism provides the generation of rhizobia strains with high SE and NC. Inactivation of the negative symbiotic regulators often results in a decreased survival of rhizobia under the edaphic stresses but is responsible for a balanced increase of plant biomass and N accumulation. Improvement of symbiotic activity is to be based on the complementary interactions of microorganisms with the genetically engineered plant cultivars which are able for selection from soil of actively fi xing N2 rhizobia strains and for their preferential multiplication in nodules. Construction of highly effective microbe-plant systems should be based on modifications of mechanisms controlling symbiosis development from the plant and bacterial sides providing the maintenance of N2-fixing zone in nodules and synthesis of NCR proteins activating the bacteroid differentiation.


2020 ◽  
Vol 70 (7) ◽  
pp. 4233-4244 ◽  
Author(s):  
Jakeline Renata Marçon Delamuta ◽  
Anderson José Scherer ◽  
Renan Augusto Ribeiro ◽  
Mariangela Hungria

Agrobacterium strains are associated with soil, plants and animals, and known mainly by their pathogenicity. We studied 14 strains isolated from nodules of healthy soybean and common bean plants in Brazil, Mexico, Ecuador and Mozambique. Sequence analysis of the 16S rRNA gene positioned the strains as Agrobacterium , but with low phylogenetic resolution. Multilocus sequence analysis (MLSA) of three partial housekeeping genes (glnII, gyrB and recA) positioned the strains in four distinct clades, with Agrobacterium pusense , Agrobacterium deltaense, Agrobacterium radiobacter and Agrobacterium sp. genomospecies G1. Analysis by BOX-PCR revealed high intraspecies diversity. Genomic analysis of representative strains of the three clades indicated that they carry the protelomerase telA gene, and MLSA analysis with six complete housekeeping genes (atpD, glnII, gyrB, recA, rpoB and thrC), as well as average nucleotide identity (less than 90 % with closest species) and digital DNA–DNA hybridization (less than 41 % with closest species) revealed that strain CNPSo 675T and Agrobacterium sp. genomospecies G1 compose a new species. Other phenotypic and genotypic characteristics were determined for the new clade. Although not able to re-nodulate the host, we hypothesize that several strains of Agrobacterium are endophytes in legume nodules, where they might contribute to plant growth. Our data support the description of the CNPSo 675T and Agrobacterium sp. genomospecies G1 strains as a new species, for which the name Agrobacterium fabacearum is proposed. The type strain is CNPSo 675T (=UMR 1457T=LMG 31642T) and is also deposited in other culture collections.


2019 ◽  
Vol 4 (1) ◽  
pp. 400-409
Author(s):  
Akbar Hossain ◽  
Sunil Kumar Gunri ◽  
Manashi Barman ◽  
Ayman EL Sabagh ◽  
Jaime A. Teixeira da Silva

AbstractGroundnut (Arachis hypogaea L.) is an important food legume in tropical and subtropical areas because of its ability to adapt to a wide range of agro-climatic regions. Groundnut is usually cultivated in nutrient-poor soil and rain-fed conditions, so average yield tends to be very low relative to potential yield. Even though the nitrogen (N) requirement of groundnut is much higher than cereals due to its high protein content, it has the capacity to meet 60-80% of N-based requirements through symbiotic N fixation via its root nodules. In its symbiotic relationship with legumes, Rhizobium fixes N, thereby positively impacting the content of this nutrient. This study aimed to isolate, characterize and purify microbial strains of Rhizobium specific to groundnut in a bid to increase this legume’s productivity. The research was conducted in the AICRP-Groundnut laboratory and greenhouse of the Directorate of Research, BCKV, in Kalyani, India during October 2016 to March 2017. Two Rhizobium isolates (RhBC and NRA1) were isolated and selected from groundnut pot cultures. After 45 days, NRA1 produced higher plant biomass, longer roots and shoots, more nodules and higher nodule dry weight than RhBC. NRA1 was selected for a future field trial. The two isolated microbial strains will aid in the screening of additional local isolates to test their effectiveness when co-cultured with local groundnut cultivars to increase yield in soil with low fertility.


Sign in / Sign up

Export Citation Format

Share Document