Isolation, characterization and purification of Rhizobium strain to enrich the productivity of groundnut (Arachis hypogaea L.)

2019 ◽  
Vol 4 (1) ◽  
pp. 400-409
Author(s):  
Akbar Hossain ◽  
Sunil Kumar Gunri ◽  
Manashi Barman ◽  
Ayman EL Sabagh ◽  
Jaime A. Teixeira da Silva

AbstractGroundnut (Arachis hypogaea L.) is an important food legume in tropical and subtropical areas because of its ability to adapt to a wide range of agro-climatic regions. Groundnut is usually cultivated in nutrient-poor soil and rain-fed conditions, so average yield tends to be very low relative to potential yield. Even though the nitrogen (N) requirement of groundnut is much higher than cereals due to its high protein content, it has the capacity to meet 60-80% of N-based requirements through symbiotic N fixation via its root nodules. In its symbiotic relationship with legumes, Rhizobium fixes N, thereby positively impacting the content of this nutrient. This study aimed to isolate, characterize and purify microbial strains of Rhizobium specific to groundnut in a bid to increase this legume’s productivity. The research was conducted in the AICRP-Groundnut laboratory and greenhouse of the Directorate of Research, BCKV, in Kalyani, India during October 2016 to March 2017. Two Rhizobium isolates (RhBC and NRA1) were isolated and selected from groundnut pot cultures. After 45 days, NRA1 produced higher plant biomass, longer roots and shoots, more nodules and higher nodule dry weight than RhBC. NRA1 was selected for a future field trial. The two isolated microbial strains will aid in the screening of additional local isolates to test their effectiveness when co-cultured with local groundnut cultivars to increase yield in soil with low fertility.

2017 ◽  
Vol 63 (8) ◽  
pp. 682-689
Author(s):  
Josiele Polzin de Oliveira-Francesquini ◽  
Mariangela Hungria ◽  
Daiani Cristina Savi ◽  
Chirlei Glienke ◽  
Rodrigo Aluizio ◽  
...  

In this study, we evaluated the diversity of rhizobia isolated from root nodules on common bean (Phaseolus vulgaris) derived from Andean and Mesoamerican centers and grown under field and greenhouse conditions. Genetic characterization of isolates was performed by sequencing analyses of the 16S rRNA gene and 2 housekeeping genes, recA and glnII, and by the amplification of nifH. Symbiotic efficiency was evaluated by examining nodulation, plant biomass production, and plant nitrogen (N) accumulation. The influence of the environment was observed in nodulation capacity, where Rhizobium miluonense was dominant under greenhouse conditions and the Rhizobium acidisoli group prevailed under field conditions. However, strain LGMB41 fit into a separate group from the type strain of R. acidisoli in terms of multilocus phylogeny, implying that it could belong to a new species. Rhizobium miluonense LGMB73 showed the best symbiotic efficiency performance, i.e., with the highest shoot-N content (77.7 mg/plant), superior to the commercial standard strain (56.9 mg/plant). Biodiversity- and bioprospecting-associated studies are important to better understand ecosystems and to develop more effective strategies to improve plant growth using a N-fixation process.


1980 ◽  
Vol 7 (2) ◽  
pp. 114-119 ◽  
Author(s):  
V. M. Reddy ◽  
J. W. Tanner

Abstract Effects of irrigation, inoculants and fertilizer nitrogen (N) on N2(C2H2) fixation in peanuts were studied in 1976 and 1977 at Delhi, Ontario. Inoculant application increased nodulation and N-fixation in both years. Powdered peat and granular formulations containing the same strains of rhizobia resulted in almost the same amounts of nodulation and N-fixation (80 kg/ha on average). Differences in nodulation from inoculants containing different strains of rhizobia were not consistent over the two years. However, 60% difference in N-fixation resulted from the inoculants containing different strains of rhizobia in both years. Nitrogen application decreased the nodule number, nodule dry weight, and N-fixation of all the inoculated peanuts. Irrigation increased the N-fixation of the peanuts treated with granular inoculant in 1976 by an average of 45% and all the inoculated peanuts in 1977 by an average of 54% but had no effect on nodulation in either year.


HortScience ◽  
1999 ◽  
Vol 34 (6) ◽  
pp. 1060-1063 ◽  
Author(s):  
Z. Wang ◽  
M.C. Acock ◽  
Q. Liu ◽  
B. Acock

Flowering time, growth, and opium gum yield from five seed sources (T, L, B1, B2, B3) of opium poppy (Papaver somniferum L.) collected from different latitudes in three Southeast Asian countries were determined. Plants were grown in six growth chambers at a 11-, 12-, 13-, 14-, 15-, or 16-hour photoperiod with a 12-hour, 25/20 °C thermoperiod. Flower initiation was observed under a dissecting microscope (40×) to determine if time to floral initiation was identical for all accessions across a wide range of photoperiods. The main capsule was lanced for opium gum at 10, 13, and 16 days after flowering (DAF). Plants were harvested at 21 DAF for plant height, leaf area, and organ dry-weight determinations. In a 16-hour photoperiod, flower initiation was observed 10 days after emergence (DAE) for B1 vs. 8 DAE for the other four accessions. Flowering time was affected most by photoperiod in B1 and least in B2. Flowering times for B3, L, and T were similar across the range of photoperiods. B2, B3, and L had the highest gum yields per capsule; even though B1 had the greatest total plant biomass, it produced the lowest gum yield. There was no difference among accessions in the average ratio of gum: individual capsule volume. For the ratio of gum: capsule dry weight, only the difference between T and B1 was significant. Capsule size did affect these ratios slightly. T had a larger gum: volume ratio for larger capsules, and B3 had a smaller gum: dry-weight ratio for heavier capsules. Flowering time varied up to 40%, capsule dry weight up to 41%, and opium gum yield up to 71% for the five accessions across all treatments. No relationship was found between flowering time and the latitude where the seed sources were collected. Time to flower initiation could not be used to predict time to anthesis because floral development rates varied significantly among accessions and photoperiods. Capsule volume and dry weight were useful in estimating gum yield.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 812
Author(s):  
Lorenzo Rossi ◽  
Lukas M. Hallman ◽  
Sawyer N. Adams ◽  
Walter O. Ac-Pangan

Growers in Florida face unique challenges regarding maintaining proper citrus nutrition. Poor draining soils with low fertility, low C.E.C., and high rates of leaching are common in this region. In response to these challenges, interest has grown in products labeled as soil conditioners. Using a completely randomized experimental design, this greenhouse study tested the effects of 5 different combinations of a traditional fertilizer (TF) and a new soil conditioner (SC) on lemon and orange seedling physiology. Eight-month-old ‘Bearss’ lemon and ‘Valencia’ sweet orange grafted on sour orange rootstocks were employed, and five repetitions were used for each treatment. Plant biomass (dry weight), height, stem diameter, chlorophyll content, stomatal conductance and nutrient uptake were analyzed after 120 days of treatment. The results show that SC has a positive impact upon both chlorophyll levels and stomatal conductance values in both orange and lemon seedlings. However, based on dry weight growth data, we can only conclude that the SC was effective for orange seedlings at 50% TF and 0.5% SC. Based on this short 120-day evaluation, the SC achieved positive growth promotion for orange (50% TF) but not for lemon seedlings.


2018 ◽  
Vol 36 (2) ◽  
pp. 126-134
Author(s):  
Manuel Iván Gómez ◽  
Stanislav Magnitskiy ◽  
Luis Ernesto Rodríguez

Potato yield depends on the genotype-environment interaction, edaphic nutrient supply, and fertilization rates. The total tuber yield (FWt), dry weight of tubers (DWt), harvest index (HI) and nutrient use efficiency in tubers (NUEt) were evaluated in the Andean region in Colombia at 75, 100, 125, and 150 d after sowing using two cultivars (Capiro, Suprema), three locations with contrasting soils (Subachoque, Facatativa and Choconta) and two levels of fertilization: F0 (unfertilized) and F1 (fertilized). The Humic Dystrudept soils with fertilization (Choconta) presented late tuber filling with increases of 48 and 64% for the DWt in the cvs. Suprema and Capiro, respectively. In Suprema, the highest production potentials were obtained in fertilized soils with low fertility, with increases of 60.9% for the DWt and 75% for the HI. On the other hand, Capiro was better adapted to soils with medium to high fertility, with increases of up to 86.7% for the FWt, as compared to the unfertilized soils. This increase may be related to higher rates of nutrient recovery efficiency (RFt), higher accumulated nutrients per tuber yield (EPt) and a better NUEt because N. Suprema presented a negative EPt and RFt with HI<45% and the lowest NUE of N and K in high fertility soils, which represents a null response to fertilization and possible mechanisms of luxury consumption for the evaluated elements.


2019 ◽  
pp. 61-67

Recognition of high yielding and nitrogen (N) fixing groundnut genotypes and desegregating them in the cereal-based cropping systems common in savannah regions will enhance food security and reduce the need for high N fertilizers hence, minimize the high cost and associated environmental consequences. Field trials were conducted during the 2015 growing season at the Research Farms of Bayero University Kano (BUK) and Institute for Agricultural Research (IAR), Ahmadu Bello University, Samaru-Zaria to assess the yield potential and Biolog- ical N fixation in 15 groundnut genotypes (ICG 4729, ICGV-IS 07823, ICGV-IS 07893, ICGV-IS 07908, ICGV- SM 07539, ICGV- SM 07599, ICGV-IS 09926, ICGV-IS 09932, ICGV-IS 09992, ICGV-IS 09994, SAMNUT-21, SAMNUT-22, SAMNUT-25, KAMPALA and KWANKWAS). The groundnut genotypes and reference Maize crop (SAMMAZ 29) were planted in a randomized complete block design in three replications. N difference method was used to estimate the amount of N fixed. The parameters determined were the number of nodules, nod- ule dry weight, shoot and root dry weights, pod, and haulm yield as well as N fixation. The nodule dry weight, BNF, haulm, and pod yield were statistically significant (P<0.01) concerning genotype and location. Similarly, their interac- tion effect was also highly significant. ICGV-IS 09926 recorded the highest nod- ule dry weight of 2.07mg /plant across the locations while ICGV-IS 09932 had the highest BNF value of 140.27Kg/ha. Additionally, KAMPALA had the high- est haulm yield, while ICGV-IS 07893 had the highest pod yield across the loca- tions with a significant interaction effect. The result shows that ICGV-IS 07893 and ICGV-IS 09932, as well as ICGV-IS 09994 and SAMNUT – 22, were the best genotypes concerning BNF, haulm and pod yield in the Northern Guinea and Sudan Savannahs of Nigeria respectively with the potential for a corresponding beneficial effect.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 485b-485
Author(s):  
Lisa M. Barry ◽  
Michael N. Dana

Nurse crops are often recommended in prairie restoration planting. This work investigated several alternative nurse crops to determine their utility in prairie planting. Nurse crops were composed of increasing densities (900, 1800, or 2700 seeds/m2) of partridge pea, spring oats, spring barley, Canada wild rye, or equal mixtures of partridge pea and one of the grasses. The experimental design was a randomized complete-block set in two sites with three blocks per site and 48 treatments per block. Each 3 × 3-m plot contained 1 m2 planted in Dec. 1995 or Mar. 1996 with an equal mix of seven prairie species. The nurse crops were sown over each nine square meter area in April 1996. Plots lacking nurse crops served as controls. Evaluated data consisted of weed pressure rankings and weed and prairie plant dry weight. Nurse crop treatments had a significant effect on weed pressure in both sites. Barley (1800 and 2700 seeds/m2) as well as partridge pea + barley (2700 seeds/m2) were most effective at reducing weed pressure. When weed and prairie plant biomass values were compared, a significant difference was observed for site quality and planting season. Prairie plant establishment was significantly greater in the poorly drained, less-fertile site and spring-sown plots in both sites had significantly higher prairie biomass values. Overall, after two seasons, there was no advantage in using nurse crops over the control. Among nurse crop treatments, oats were most effective in reducing weed competition and enhancing prairie plant growth.


2001 ◽  
Vol 14 (7) ◽  
pp. 887-894 ◽  
Author(s):  
Boglárka Oláh ◽  
Erno Kiss ◽  
Zoltán Györgypál ◽  
Judit Borzi ◽  
Gyöngyi Cinege ◽  
...  

In specific plant organs, namely the root nodules of alfalfa, fixed nitrogen (ammonia) produced by the symbiotic partner Sinorhizobium meliloti supports the growth of the host plant in nitrogen-depleted environment. Here, we report that a derivative of S. meliloti carrying a mutation in the chromosomal ntrR gene induced nodules with enhanced nitrogen fixation capacity, resulting in an increased dry weight and nitrogen content of alfalfa. The efficient nitrogen fixation is a result of the higher expression level of the nifH gene, encoding one of the subunits of the nitrogenase enzyme, and nifA, the transcriptional regulator of the nif operon. The ntrR gene, controlled negatively by its own product and positively by the symbiotic regulator syrM, is expressed in the same zone of nodules as the nif genes. As a result of the nitrogen-tolerant phenotype of the strain, the beneficial effect of the mutation on efficiency is not abolished in the presence of the exogenous nitrogen source. The ntrR mutant is highly competitive in nodule occupancy compared with the wild-type strain. Sequence analysis of the mutant region revealed a new cluster of genes, termed the “ntrPR operon,” which is highly homologous to a group of vap-related genes of various pathogenic bacteria that are presumably implicated in bacterium-host interactions. On the basis of its favorable properties, the strain is a good candidate for future agricultural utilization.


2008 ◽  
Vol 48 (3) ◽  
pp. 296 ◽  
Author(s):  
C. J. Birch ◽  
G. McLean ◽  
A. Sawers

This paper reports on the use of APSIM – Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004–05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004–05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004–05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Geetha Rajendran ◽  
Maheshwari H. Patel ◽  
Sanket J. Joshi

One of the ways to increase the competitive survivability of rhizobial biofertilizers and thus achieve better plant growth under such conditions is by modifying the rhizospheric environment or community by addition of nonrhizobial nodule-associated bacteria (NAB) that cause better nodulation and plant growth when coinoculated with rhizobia. A study was performed to investigate the most commonly associated nodule-associated bacteria and the rhizospheric microorganisms associated with theFenugreek(Trigonella foenum-graecum) plant. Isolation of nonrhizobial isolates from root nodules ofFenugreekwas carried out along with the rhizospheric isolates. About 64.7% isolates obtained fromFenugreeknodules were gram-negative coccobacilli, 29.41% were gram-positive bacilli, and all rhizospheric isolates except one were gram-positive bacilli. All the isolates were characterized for their plant growth promoting (PGP) activities. Two of the NAB isolates M2N2c and B1N2b (Exiguobacterium sp.) showed maximum positive PGP features. Those NAB isolates when coinoculated with rhizobial strain—S. meliloti, showed plant growth promotion with respect to increase in plant’s root and shoot length, chlorophyll content, nodulation efficiency, and nodule dry weight.


Sign in / Sign up

Export Citation Format

Share Document