scholarly journals Production of O(1D) following electron impact on CO2

2013 ◽  
Vol 91 (12) ◽  
pp. 1044-1048 ◽  
Author(s):  
W. Kedzierski ◽  
J.D. Hein ◽  
C.J. Tiessen ◽  
D. Lukic ◽  
J.A. Trocchi ◽  
...  

We have studied the excitation of metastable O(1D) following dissociative excitation of CO2 in the electron impact energy range from threshold to 400 eV. A solid Ne matrix at ∼20 K forms the heart of the detector. This is sensitive to the metastable species through the formation of excited excimers (NeO*), The resultant excimer radiation is readily detected, providing a means of measuring the production of the metastables. Using a pulsed electron beam and time-of-flight techniques, we have measured the O(1D) kinetic energy spectrum and its relative production cross sections as a function of electron impact energy. Threshold energy data are used to gain information about the excitation channels involved. In addition, an emission excitation function for the red photons, emitted in coincidence with the exciting electron pulse, has been measured in the 0–400 eV energy range.

1984 ◽  
Vol 62 (1) ◽  
pp. 1-9 ◽  
Author(s):  
K. Becker ◽  
J. W. McConkey

We have studied the Lyman [Formula: see text] and Werner [Formula: see text] band emissions produced by 20–500-eV electrons incident on molecular deuterium, D2. Emission cross sections of (3.7 ± 0.9) × 10−17 cm2 for the B → X and (3.54 ± 0.74) × 10−17 cm2 for the C → X system have been determined at 100-eV impact energy. Cascading did not play an important role in the [Formula: see text] emission, but it was shown to affect the [Formula: see text] emission seriously, particularly for impact energies below 50 eV. We estimate the cross section for direct excitation of the [Formula: see text] state and the cascade cross section to be 2.95 × 10−17 and 0.75 × 10−17 cm2, at 100 eV respectively. The cascade cross section is 20 ± 10% of the total B → X emission cross section, and is essentially constant in the energy range 300–50 eV, but increases significantly for lower impact energies, e.g., to 40 ± 15% at 27.5 eV. The cross section for the atomic 2p → 1s Lyman α emission from D2 has also been measured and the value of 1.00 × 10−17 cm2 at 100 eV is 20% smaller than the cross section for Lyman α emission from H2.


1989 ◽  
Vol 67 (7) ◽  
pp. 699-705 ◽  
Author(s):  
S. Wang ◽  
J. L. Forand ◽  
J. W. McConkey

Dissociative excitation of CF4 by electron impact has been studied under single-collision conditions for incident energies up to 600 eV. The emission spectrum in the range 50–130 nm shows many features arising from neutral and singly ionized fluorine and carbon fragments. Absolute cross sections for the observed features were measured at 200 eV incident energy, while the excitation functions of the most intense emissions were studied over the whole energy range. Cascade was shown to be the dominant excitation mechanism for some of these features.


1996 ◽  
Vol 213 (1-3) ◽  
pp. 369-384 ◽  
Author(s):  
K. Motohashi ◽  
H. Soshi ◽  
M. Ukai ◽  
S. Tsurubuchi

2017 ◽  
Vol 141 ◽  
pp. 17-21 ◽  
Author(s):  
Y. Liang ◽  
M.X. Xu ◽  
Y. Yuan ◽  
Y. Wu ◽  
Z.C. Qian ◽  
...  

2018 ◽  
Vol 149 (13) ◽  
pp. 134303 ◽  
Author(s):  
A. I. Lozano ◽  
A. Loupas ◽  
F. Blanco ◽  
J. D. Gorfinkiel ◽  
G. García

1970 ◽  
Vol 48 (3) ◽  
pp. 275-278 ◽  
Author(s):  
J. Davis ◽  
S. Morin

We present cross-section calculations for excitation of singly-ionized barium ions by electron impact over the energy range from 3 to 100 eV. The cross sections were evaluated using Burgess' semiclassical method. Finally, our predictions are compared with two other current techniques and some recent experimental measurements. The agreement was found to be good.


RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20090-20097 ◽  
Author(s):  
Jaspreet Kaur ◽  
Rahla Naghma ◽  
Bobby Antony

The present article reports the calculation of electron impact total ionisation cross sections for C3 to C6 ethanoates for the energy range from the ionisation threshold of the target to 5000 eV.


2012 ◽  
Vol 90 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Y. Wu ◽  
Z. An ◽  
Y.M. Duan ◽  
M.T. Liu ◽  
X.P. Ouyang

The absolute K-shell ionization cross sections of K and Lα X-ray production cross sections of I by 10–30 keV electron impact have been measured. The target was prepared by evaporating a thin film of compound KI to a thick pure carbon substrate. The effects of multiple scattering of electrons penetrating the target films, electrons reflected from the thick pure carbon substrates and bremsstrahlung photons produced when incident electrons impacted on the targets were corrected by using the Monte Carlo method. For K K-shell and I L-shell X-ray characteristic peaks, the spectra were fitted using the spectrum-fitting program ALLFIT to extract the Kα and Kβ peak counts more accurately for element K, and Lα peak counts for element I. The experimental results were compared with some theoretical results developed recently and available experimental data from the literature. The experimental data for I L-shell X-ray production cross sections by 10–30 keV electron impact are given here for the first time.


Author(s):  
Iman Tarik Al-Alawy ◽  
Ronak Ikram Ali

The evaluation are based on mainly on the calculations of the nuclear optical model potential and relevant parameters are collected and selected from References Input Parameter Library (RIPL) which is being developed under the international project coordinated by the International Atomic Energy Agency (IAEA). The analyzing of a complete energy range has done starting from threshold energy for each reaction. The cross sections are reproduced in fine steps of incident neutron energy with 0.01MeV intervals with their corresponding errors. The recommended cross sections for available experimental data taken from EXFOR library have been calculated for all the considered neutron induced reactions for U-238 isotopes. The calculated results are analyzed and compared with the experimental data. The optimized optical potential model parameters give a very good agreement with the experimental data over the energy range 0.001-20MeV for neutron induced cross section reactions (n,f), (n,tot), (n,el), (n,inl), (n,2n), (n,3n), and (n,γ) for spherical U-238 target elements.


Sign in / Sign up

Export Citation Format

Share Document