Center of mass energy for charged particles in regular black holes

2014 ◽  
Vol 92 (6) ◽  
pp. 497-503 ◽  
Author(s):  
M. Sharif ◽  
Nida Haider

This paper is devoted to study the acceleration and collision of charged particles in a general regular space–time. Using angular momentum, energy, and components of four-velocity, we explore the effect of charged particles on the center of mass energy. It is found that the collision energy of charged particles (independent of both singularity as well as horizon) is greater than that of uncharged particles. This depends not only on the mass to charge ratio of the black hole but also on the charge of the particle. Finally, we evaluate the collision energy of charged particles for a regular black hole, a particular example.

Universe ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 44 ◽  
Author(s):  
Kamoliddin Haydarov ◽  
Ahmadjon Abdujabbarov ◽  
Javlon Rayimbaev ◽  
Bobomurat Ahmedov

Magnetized particle motion around black holes in conformal gravity immersed in asymptotically uniform magnetic field has been studied. We have also analyzed the behavior of magnetic fields near the horizon of the black hole in conformal gravity and shown that with the increase of conformal parameters L and N the value of angular component of magnetic field at the stellar surface decreases. The maximum value of the effective potential corresponding to circular motion of the magnetized particle increases with the increase of conformal parameters. It is shown that in all cases of neutral, charged and magnetized particle collisions in the black hole environment the center-of-mass energy decreases with the increase of conformal parameters L and N. In the case of the magnetized and negatively charged particle collisions, the innermost collision point with the maximum center-of-mass energy comes closer to the central object due to the effects of the parameters of the conformal gravity. We have applied the results to the real astrophysical scenario when a pulsar treated as a magnetized particle is orbiting the super massive black hole (SMBH) Sgr A* in the center of our galaxy in order to obtain the estimation of magnetized compact object’s orbital parameter. The possible detection of pulsar in Sgr A* close environment can provide constraints on black hole parameters. Here we have shown that there is degeneracy between spin of SMBH and ambient magnetic field and consequently the interaction of magnetic field ∼ 10 2 Gauss with magnetic moment of magnetized neutron star can in principle mimic spin of Kerr black holes up to 0.6 .


Author(s):  
Ayesha Zakria

We study the acceleration of charged particles by Reissner Nordström black hole by taking into account the term appearing in the formula of the center of mass energy due to charge of the particle. We consider that the particle is radially falling towards the black hole, i.e., [Formula: see text]. It is found that the center of mass energy is infinitely large at the outer horizon without any constraint.


2017 ◽  
Vol 32 (16) ◽  
pp. 1750088 ◽  
Author(s):  
Sharmanthie Fernando

In this paper, we have studied particle collisions around a charged dilaton black hole in 2 + 1 dimensions. This black hole is a solution to the low energy string action in 2 + 1 dimensions. Time-like geodesics for charged particles are studied in detail. The center-of-mass energy for two charged particles colliding closer to the horizon is calculated and shown to be infinite if one of the particles has the critical charge.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850088 ◽  
Author(s):  
Sanjar Shaymatov ◽  
Bobomurat Ahmedov ◽  
Zdeněk Stuchlík ◽  
Ahmadjon Abdujabbarov

We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter [Formula: see text] characterizing its equation of state, and the quintessential field-intensity parameter [Formula: see text] determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength [Formula: see text] there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter [Formula: see text]; the center-of-mass energy decreases if the quintessential field-intensity parameter [Formula: see text] increases.


2012 ◽  
Vol 27 (12) ◽  
pp. 1250068 ◽  
Author(s):  
IBRAR HUSSAIN

It is shown that in the background of the Ayòn–Beato–Garcìa–Bronnikov (ABGB) black hole, the center-of-mass (CM) energy of collision for two charged particles falling freely from rest at infinity is infinite at the event horizon if one of the colliding particle has critical charge and the other one has any different value of the charge. For the Einstein–Maxwell-dilaton–axion (EMDA) black hole it is found that the CM energy of collision for two uncharged particles falling freely from rest at infinity remains finite. In the case of Bañados–Teitelboim–Zanelli (BTZ) black hole the CM energy of collision for two uncharged particles falling freely from rest at infinity is infinite at the event horizon if there is no rotation. It is observed that in the case of the extremal rotating BTZ black hole, at the event horizon this CM energy remains finite.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350013 ◽  
Author(s):  
CHIKUN DING ◽  
CHANGQING LIU ◽  
QIAN QUO

We study the spacetime noncommutative effect on black hole as particle accelerators and, find that the particles falling from infinity with zero velocity cannot collide with unbound energy, either near the horizon or on the prograde ISCO when the noncommutative Kerr black hole is exactly extremal. Our results also show that the bigger of the spinning black hole's mass is the higher of center of mass energy that the particles obtain. For small and medium noncommutative Schwarzschild black hole, the collision energy depends on the black hole's mass.


2003 ◽  
Vol 18 (11) ◽  
pp. 1843-1882 ◽  
Author(s):  
MARCO CAVAGLIÀ

In models with large extra dimensions, particle collisions with center-of-mass energy larger than the fundamental gravitational scale can generate nonperturbative gravitational objects such as black holes and branes. The formation and the subsequent decay of these super-Planckian objects would be detectable in particle colliders and high energy cosmic ray detectors, and have interesting implications in cosmology and astrophysics. In this paper we present a review of black hole and brane production in TeV-scale gravity.


Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 76
Author(s):  
Ahmadjon Abdujabbarov ◽  
Javlon Rayimbaev ◽  
Farruh Atamurotov ◽  
Bobomurat Ahmedov

In the present work we explored the dynamics of magnetized particles around the compact object in γ-spacetime in the presence of an external asymptotically-uniform magnetic field. The analysis of the circular orbits of magnetized particles around the compact object in the spacetime of a γ-object immersed in the external magnetic field has shown that the area of stable circular orbits of magnetized particles increases with the increase of γ-parameter. We have also investigated the acceleration of the magnetized particles near the γ-object and shown that the center-of-mass energy of colliding magnetized particles increases with the increase of γ-parameter. Finally, we have applied the obtained results to the astrophysical scenario and shown that the values of γ-parameter in the range of γ∈(0.5,1) can mimic the spin of Kerr black hole up to a≃0.85, while the magnetic interaction can mimic the γ-parameter at γ∈(0.8,1) and spin of a Kerr black hole up to a≃0.3.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Fu-Hu Liu ◽  
Ya-Qin Gao ◽  
Tian Tian ◽  
Bao-Chun Li

The transverse momentum and pseudorapidity distributions of charged particles produced in Pb-Pb collisions with different centrality intervals at center-of-mass energy per nucleon pairsNN=2.76 TeV have been analyzed by using the improved multisource thermal model in which the whole interacting system and then the sources are described by the Tsallis statistics. The modelling results are in agreement with experimental data of the ALICE Collaboration. The rapidity distributions of charged particles are obtained according to the extracted parameter values. The shapes of interacting events (the dispersion plots of charged particles) are given in the momentum, rapidity, velocity, and coordinate spaces. Meanwhile, the event shapes in different spaces consisted by different transverse quantities and longitudinal quantities are presented.


Sign in / Sign up

Export Citation Format

Share Document