scholarly journals Transverse Momentum and Pseudorapidity Distributions of Charged Particles and Spatial Shapes of Interacting Events in Pb-Pb Collisions at 2.76 TeV

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Fu-Hu Liu ◽  
Ya-Qin Gao ◽  
Tian Tian ◽  
Bao-Chun Li

The transverse momentum and pseudorapidity distributions of charged particles produced in Pb-Pb collisions with different centrality intervals at center-of-mass energy per nucleon pairsNN=2.76 TeV have been analyzed by using the improved multisource thermal model in which the whole interacting system and then the sources are described by the Tsallis statistics. The modelling results are in agreement with experimental data of the ALICE Collaboration. The rapidity distributions of charged particles are obtained according to the extracted parameter values. The shapes of interacting events (the dispersion plots of charged particles) are given in the momentum, rapidity, velocity, and coordinate spaces. Meanwhile, the event shapes in different spaces consisted by different transverse quantities and longitudinal quantities are presented.

2016 ◽  
Vol 25 (06) ◽  
pp. 1650036 ◽  
Author(s):  
Fu-Hu Liu ◽  
Hai-Ling Lao ◽  
Roy A. Lacey

The rapidity distributions of [Formula: see text] mesons produced in proton-lead ([Formula: see text]-Pb) collisions at center-of-mass energy per nucleon pair [Formula: see text][Formula: see text]TeV are studied by using a multisource thermal model and compared with the experimental data of the LHCb and ALICE Collaborations. Correspondingly, the pseudorapidity distributions are accurately obtained from the parameters extracted from the rapidity distributions. At the same time, the transverse momentum distributions in the same experiments are described by the simplest Erlang distribution which is the folding result of two exponential distributions which are contributed by the target and projectile partons, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Er-Qin Wang ◽  
Yin-Qun Ma ◽  
Li-Na Gao ◽  
San-Hong Fan

In this paper, by using a Tsallis-Pareto-type function and the multisource thermal model, the elliptic flow coefficients of particles π±, K±, p+p¯, Λ+Λ¯, and KS0 produced in Pb–Pb collisions at the center-of-mass energy of sNN=5.02TeV are investigated. In the process of collisional evolution, because of geometric structure, pressure gradient, and thermal diffusion effects, deformation and translation occurred in the isotropic emission source, leading to anisotropy in the azimuth distribution of the final-state particles. Based on these dynamic factors, the dependence of elliptic flow on transverse momentum is described as well.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Ya-Hui Chen ◽  
Fu-Hu Liu ◽  
Roy A. Lacey

Transverse momentum (pT) and rapidity (y) spectra ofZbosons and quarkonium states (some charmoniumcc¯mesons such asJ/ψandψ(2S)and some bottomoniumbb¯mesons such asΥ(1S),Υ(2S), andΥ(3S)) produced in proton-proton (pp) and lead-lead (Pb-Pb) collisions at the large hadron collider (LHC) are uniformly described by a hybrid model of two-component Erlang distribution forpTspectrum and two-component Gaussian distribution foryspectrum. The former distribution results from a multisource thermal model, and the latter one results from the revised Landau hydrodynamic model. The modelling results are in agreement with the experimental data measured in pp collisions at center-of-mass energiess=2.76and 7 TeV and in Pb-Pb collisions at center-of-mass energy per nucleon pairsNN=2.76 TeV. Based on the parameter values extracted frompTandyspectra, the event patterns (particle scatter plots) in two-dimensionalpT-yspace and in three-dimensional velocity space are obtained.


2017 ◽  
Vol 32 (10) ◽  
pp. 1750040 ◽  
Author(s):  
R. Taghavi ◽  
A. Mirjalili

In this work, we directly fit the QCD dimensional transmutation parameter, [Formula: see text], to experimental data of Drell–Yan (DY) observables. For this purpose, we first obtain the evolution of transverse momentum dependent parton distribution functions (TMDPDFs) up to the next-to-next-to-leading logarithm (NNLL) approximation based on Collins–Soper–Sterman (CSS) formalism. As is expecting the TMDPDFs are appearing at larger values of transverse momentum by increasing the energy scales and also the order of approximation. Then we calculate the cross-section related to the TMDPDFs in the DY process. As a consequence of global fitting to the five sets of experimental data at different low center-of-mass energies and one set at high center-of-mass energy, using CETQ06 parametrizations as our boundary condition, we obtain [Formula: see text] MeV corresponding to the renormalized coupling constant [Formula: see text] which is within the acceptable range for this quantity. The goodness of [Formula: see text] shows the results for DY cross-section are in good agreement with different experimental sets, containing E288, E605 and R209 at low center-of-mass energies and [Formula: see text], CDF data at high center-of-mass energy. The repeated calculations, using HERAPDFs parametrizations is yielding us numerical values for fitted parameters very close to what we obtain using CETQ06 PDFs set. This indicates that the obtained results have enough stability by variations in the boundary conditions.


2005 ◽  
Vol 14 (04) ◽  
pp. 579-586
Author(s):  
FU SONG ◽  
FU-HU LIU

The pseudorapidity distributions of charged particles produced in [Formula: see text] annihilations and AA collisions at high energies are investigated by using a revised thermalized cylinder model. The Monte Carlo calculated results are compared and found to be in good agreement with the experimental data of [Formula: see text] annihilations at center-of-mass energy [Formula: see text], 546, 200, and 53 GeV, Au–Au collisions at [Formula: see text] and 130 A GeV, and Pb–Pb collisions at [Formula: see text].


2014 ◽  
Vol 92 (6) ◽  
pp. 497-503 ◽  
Author(s):  
M. Sharif ◽  
Nida Haider

This paper is devoted to study the acceleration and collision of charged particles in a general regular space–time. Using angular momentum, energy, and components of four-velocity, we explore the effect of charged particles on the center of mass energy. It is found that the collision energy of charged particles (independent of both singularity as well as horizon) is greater than that of uncharged particles. This depends not only on the mass to charge ratio of the black hole but also on the charge of the particle. Finally, we evaluate the collision energy of charged particles for a regular black hole, a particular example.


2003 ◽  
Vol 18 (16) ◽  
pp. 1107-1112
Author(s):  
YUNHUA CHENG ◽  
FENG LIU

Events of Au + Au collisions from AGS to RHIC energies by RQMD (v2.4) generator are produced. [Formula: see text] ratios as functions of rapidity, transverse momentum and centrality at [Formula: see text] are studied. The dependence on the center of mass energy of [Formula: see text] ratios is presented, compared with the experimental results. It is shown that [Formula: see text] ratio from rescattering RQMD is lower than those of the experiments at RHIC energies. We argue that hadronic rescattering at RHIC energies is suppressed compared to AGS, SPS energies.


Sign in / Sign up

Export Citation Format

Share Document