The local order and structural evolution of amorphous PdAg alloy during isothermal annealing under high pressure: A molecular dynamics study

2015 ◽  
Vol 93 (1) ◽  
pp. 7-13
Author(s):  
Fatih Ahmet Celik ◽  
Sefa Kazanc

In this study, the local order and the structural evolution of the PdAg binary alloy system during the crystallization process from the amorphous phase under different pressures was investigated using the molecular dynamics simulation method. The structural development and phase transformation of the model alloy system for pressures of 0, 1, and 5 GPa are analysed based on variations of the radial distribution function, the bond orientational order parameters, and Honeycutt–Andersen bond-type index method. The simulation results showed that higher pressures favoured amorphous-type atomic clusters and had an important effect on the bond orientational order parameters of the model system of the transformation from amorphous state to stable crystal phase during the isothermal annealing.

2016 ◽  
Vol 30 (11) ◽  
pp. 1650129 ◽  
Author(s):  
F. A. Celik ◽  
A. K. Yildiz

In this study, we investigate the homogeneous nucleation kinetics of copper and nickel system during cooling process using molecular dynamics simulation (MDS). The calculation is carried out for a different number of atoms consisting of 500, 2048, 8788 and 13,500 based on embedded atom method (EAM). It is observed that the melting points for the both model increases with increasing the size of systems (i.e. the number of atoms) as expected from Parrinello and Rahman MD method. The interfacial free energies and critical nucleus radius of nickel and copper are also determined by molecular dynamics, and the results are consistent with the classical nucleation theory. The structural development and phase transformation are also determined from the radial distribution function (RDF) and local bond orientational order parameters (LBOO).


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5489
Author(s):  
Alexander Vogel ◽  
Mathias Bosse ◽  
Marcel Gauglitz ◽  
Sarah Wistuba ◽  
Peter Schmidt ◽  
...  

We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.


2013 ◽  
Vol 683 ◽  
pp. 348-352
Author(s):  
J.H. Xia ◽  
Zheng Fu Cheng ◽  
Xu Yang Xiao

The structural transitions of Ag965clusters during two different quenching processes (Q1:1.0×1014K/s, Q2: 1.0×1012K/s) were studied using molecular dynamics simulations. This work gives the structure properties including the variations with temperature of pair-correlation function, bond-angle distribution function, bond pairs and bond orientational order parameters in both rapid quenching processes. Our results indicated that the liquid Ag965 was frozen into amorphous structure at 100 K under the quenching condition Q1. While the liquid Ag965transformed to hexagonal close-packed (hcp) phase at the temperature 100 K under the quenching condition Q2.These instructions give you basic guidelines for preparing papers for conference proceedings.


1988 ◽  
Vol 66 (4) ◽  
pp. 1018-1025 ◽  
Author(s):  
A. S. Trew ◽  
G. S. Pawley

Phase changes in adamantane have been studied by MD simulation on the DAP computers, using a zero-pressure technique to simulate clusters of 128 and 256 molecules where each member interacts with all others via the rigid molecule model and the 6-exp atom–atom potential. The form of the potential has been modified to permit the use of the 16 hydrogen sites only, giving a 65% saving in the calculation times. This model is shown to give lattice dynamics of adamantane closely similar to results with potentials which are generally accepted.Using this potential the system equilibrates into the correct low temperature phase [Formula: see text] and on heating, a transition is observed at 210 ± 10 K to an Fm3m phase where the molecules lie preferentially in the Td orientations, as expected. Further heating beyond 240 ± 15 K removes all apparent orientational order, though the underlying lattice is still fcc. On recooling the cluster from 300 to 100 K the orientational distribution function developed a significant degree of order as determined through the calculation of a correlation function designed to show any local order. This order is consistent with the lowest phase structure, but would in itself be insufficient to suggest a particular crystal structure.


Sign in / Sign up

Export Citation Format

Share Document