Black hole remnant and quantum tunneling corrections to the five-dimensional Myers–Perry black hole based on generalized uncertainty principle

2016 ◽  
Vol 94 (11) ◽  
pp. 1153-1157 ◽  
Author(s):  
Hui-Ling Li ◽  
Rong Lin

Taking into account quantum gravity effect influenced by the generalized uncertain principle (GUP), via modified Dirac equation, we discuss the quantum gravity correction to fermion tunneling and the remnant in a five-dimensional Myers–Perry black hole. By analyzing the modified tunneling probability, we find that the emission spectrum is no longer pure thermal. Furthermore, it is worth emphasizing that the quantum gravity correction influenced by GUP prevents the black hole from evaporating totally, resulting in a black hole remnant.

2020 ◽  
Vol 35 (27) ◽  
pp. 2050225 ◽  
Author(s):  
Riasat Ali ◽  
Muhammad Asgher ◽  
M. F. Malik

This paper is devoted to the tunneling radiation and quantum gravity effect on tunneling radiation of neutral regular black hole in Rastall gravity. We analyzed the tunneling radiation and Hawking temperature of neutral regular black hole by applying the Hamilton-Jacobi ansatz phenomenon. Lagrangian wave equation have been investigated by generalized uncertainty principle (GUP), using the WKB-approximation and calculated the tunneling rate as well as temperature. Furthermore, we analyzed the temperature of this neutral regular black hole in the presence of gravity. The stability and instability of neutral regular black hole are also analyzed.


2017 ◽  
Vol 26 (05) ◽  
pp. 1741018 ◽  
Author(s):  
Muhammad Rizwan ◽  
K. Saifullah

When quantum gravity effects, that are based on generalized uncertainty principle with a minimal measurable length, are incorporated into black hole physics the Klein–Gordon and Dirac equations get modified. Using these modified equations we investigate tunneling of scalar particles and fermions from event and acceleration horizons of accelerating and rotating black holes and obtain the modified Hawking temperature with quantum gravity effects. We see that Hawking temperature depends on black hole parameters as well as the quantum numbers of emitted fermions. The quantum corrections slow down black hole evaporation and leave a black hole remnant. This contradicts complete evaporation of a black hole which is presaged by the standard temperature formula for black holes. The modified Hawking temperatures presented here, in appropriate limits, are consistent with the previous results in the literature.


2020 ◽  
Vol 35 (13) ◽  
pp. 2050104 ◽  
Author(s):  
R. Babar ◽  
W. Javed ◽  
A. Övgün

In this paper, we investigate the Hawking radiation process by using the quantum tunneling phenomenon of massive spin-1 (W-bosons) and spin-0 particles by the black hole in 2 + 1 dimensions surrounded by quintessence as well as charged BTZ-like magnetic black hole. First of all, by using Hamilton–Jacobi ansatz and WKB approximation to the field equation of massive vector particles, we get the required tunneling rate of emitted particles and obtain the corresponding Hawking temperature [Formula: see text] for the black hole (BH) surrounded by quintessence. In order to study the quantum gravity effects, we utilize the generalized Proca and Klein–Gordan equations incorporating the generalized uncertainty principle (GUP) for these BHs and recover their modified tunneling probability as well as accompanying quantum corrected temperatures [Formula: see text].


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 631 ◽  
Author(s):  
Riasat Ali ◽  
Kazuharu Bamba ◽  
Syed Asif Ali Shah

We investigate the massive vector field equation with the WKB approximation. The tunneling mechanism of charged bosons from the gauged super-gravity black hole is observed. It is shown that the appropriate radiation consistent with black holes can be obtained in general under the condition that back reaction of the emitted charged particle with self-gravitational interaction is neglected. The computed temperatures are dependant on the geometry of black hole and quantum gravity. We also explore the corrections to the charged bosons by analyzing tunneling probability, the emission radiation by taking quantum gravity into consideration and the conservation of charge and energy. Furthermore, we study the quantum gravity effect on radiation and discuss the instability and stability of black hole.


2010 ◽  
Vol 88 (11) ◽  
pp. 851-855 ◽  
Author(s):  
De-Jiang Qi ◽  
Shuang-Mei Li ◽  
Hong-Qiang Ru

In this paper, motivated by the Kerner and Man fermion tunneling method of 4-dimensional black holes, we further improve the analysis to investigate the quantum tunneling effect of Dirac particles from the five-dimensional Schwarzschild–Gödel black hole. We successfully construct a set of appropriate matrices γμ for the general covariant Dirac equation and derive the tunneling probability and Hawking temperature, which is exactly the same as that obtained by other methods.


Author(s):  
Aheibam Keshwarjit Singh ◽  
Irom Ablu Meitei ◽  
Telem Ibungochouba Singh ◽  
Kangujam Yugindro Singh

In this paper, we solve the Dirac Equation in curved space–time, modified by the generalized uncertainty principle, in the presence of an electromagnetic field. Using this, we study the tunneling of [Formula: see text]-spin fermions from Kerr–Newman black hole. Corrections to the Hawking temperature and entropy of the black hole due to quantum gravity effects are also discussed.


2015 ◽  
Vol 30 (05) ◽  
pp. 1550016
Author(s):  
Guoping Li ◽  
Tianhu Cheng ◽  
Zhang Li ◽  
Zhongwen Feng ◽  
Xiaotao Zu

Adopting the Hamilton–Jacobi method, we investigated the tunneling radiation of a deform Hořava–Lifshitz black hole, and the original tunneling rate and Hawking temperature are obtained. Based on the generalized uncertainty principle, recent researches imply that the quantum gravity corrected the Dirac equation exactly. Hence, the corrected Dirac equation can express the tunneling behavior of fermions may be more suitable, and meanwhile, the corrected Hawking temperature of the Hořava–Lifshitz black hole is obtained. Comparing with previous results, we find that the Hawking temperature is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we inferred that the Hawking radiation would stop by the reason of the quantum gravity, and the remnant of the black hole exists naturally, also the singularity of the black hole is avoided.


2020 ◽  
Vol 35 (05) ◽  
pp. 2050018
Author(s):  
T. Ibungochouba Singh ◽  
Y. Kenedy Meitei ◽  
I. Ablu Meitei

The Hawking radiation of BTZ black hole is investigated based on generalized uncertainty principle effect by using Hamilton–Jacobi method and Dirac equation. The tunneling probability and the Hawking temperature of the spin-1/2 particles of the BTZ black hole are investigated using the modified Dirac equation based on the GUP. The modified Hawking temperature for fermion crossing the black hole horizon includes the mass parameter of the black hole, angular momentum, energy and also outgoing mass of the emitted particle. Besides, considering the effect of GUP into account, the modified Hawking radiation of massless particle from a BTZ black hole is investigated using Damour and Ruffini method, tortoise coordinate transformation and modified Klein–Gordon equation. The relation between the modified Hawking temperature obtained by using Damour–Ruffini method and the energy of the emitted particle is derived. The original Hawking temperature is also recovered in the absence of quantum gravity effect. There is a possibility of negative Hawking temperature for emission of Dirac particles under quantum gravity effects.


Sign in / Sign up

Export Citation Format

Share Document