Lattice Boltzmann simulation of conjugate forced convection in a channel heat sink with surface-mounted blocks

2019 ◽  
Vol 97 (12) ◽  
pp. 1332-1341
Author(s):  
Haifeng Zhang ◽  
Dinggen Li ◽  
Peixin Ye ◽  
Zihao Yu

The study of the conjugate forced convection in a channel has many practical applications and has attracted attention from researchers, although the conjugate heat transfer in this configuration is usually ignored. In this paper, the conjugate forced convection heat transfer in a channel heat sink with surface-mounted blocks is numerically studied with the lattice Boltzmann method. The effects of Reynolds numbers and geometrical parameters of the blocks in different aspect ratios on the flow field and temperature distribution for various thermal conductivity ratio of solid wall to the fluid are analyzed. The results reveal that the distributions of the vortices and streamlines in the channel heat sink largely depend on the geometric parameters, and the increase of the distance between two mounted blocks tends to cause the pressure drop to increase and the average Nusselt number decreases. In addition, we found that a modification of the thermal conductivity ratio of solid to fluid has little effect on the pressure drop, whereas the heat transfer performance becomes much better.

2015 ◽  
Vol 19 (3) ◽  
pp. 1005-1016 ◽  
Author(s):  
Hasan Celik ◽  
Moghtada Mobedi

Temperature and velocity fields in a vertical channel partially filled with porous medium under mixed convection heat transfer condition are obtained. The heat transfer equation and equation of motion for clear and porous layer regions are written and solved analytically. The nondimensionalization of the governing equations yields two Grashof numbers as Grc and Grd for clear and porous sections where Grd=Da.Grc. The dimensionless governing parameters for the problem are Grc (or Grd), Da, thermal conductivity ratio (i.e., K) and thickness of porous layer. The temperature and velocity profiles for different values of Grc, Da, K and thickness of porous layer are plotted and their changes with the governing parameters are discussed. Moreover, the variation of pressure drop with the governing parameters is investigated. The decrease of porous layer thickness or thermal conductivity ratio increases the possibility of the downward flows. Thermal conductivity ratio plays important role on pressure drop, particularly for the channels with high values of Grc/Re.


Author(s):  
Peixin Ye ◽  
Dinggen Li ◽  
Zihao Yu ◽  
Haifeng Zhang

In this paper, a modified lattice Boltzmann model that incorporates the effect of heat capacity is adopted to study the effects of a centered conducting body on natural convection of non-Newtonian fluid in a square cavity with time-periodic temperature distribution. The effects of power-law index, Rayleigh number, heat capacity ratio, thermal conductivity ratio, body size, temperature pulsating period and the temperature pulsating amplitude on fluid flow and heat transfer are analyzed in detail. The results showed that the increase of Rayleigh number and thermal conductivity ratio as well as the decrease of power-law index can strengthen both transient and global heat transfer, while the increase of heat capacitance of fluid to the solid wall can only enhance the transient heat transfer, and has little effect on the overall heat transfer. Further, the increase of body size will reduce both the transient heat transfer ratio and the overall heat transfer ratio. In addition, the decrease of temperature pulsating period can enhance the transient heat transfer, but it will slightly weaken the overall heat transfer. Finally, the results show that both the transient and the overall heat transfer ratio are increased with the increase of temperature pulsating amplitude.


Author(s):  
Abderrahim Bourouis ◽  
Abdeslam Omara ◽  
Said Abboudi

Purpose – The purpose of this paper is to provide a numerical study of conjugate heat transfer by mixed convection and conduction in a lid-driven enclosure with thick vertical porous layer. The effect of the relevant parameters: Richardson number (Ri=0.1, 1, 10) and thermal conductivity ratio (Rk=0.1, 1, 10, 100) are investigated. Design/methodology/approach – The studied system is a two dimensional lid-driven enclosure with thick vertical porous layer. The left vertical wall of the enclosure is allowed to move in its own plane at a constant velocity. The enclosure is heated from the right vertical wall isothermally. The left and the right vertical walls are isothermal but temperature of the outside of the right vertical wall is higher than that of the left vertical wall. Horizontal walls are insulated. The governing equations are solved by finite volume method and the SIMPLE algorithm. Findings – From the finding results, it is observed that: for the two studied cases, heat transfer rate along the hot wall is a decreasing function of thermal conductivity ratio irrespective of Richardson numbers contrary to the heat transfer rate along the fluid-porous layer interface which is an increasing function of thermal conductivity ratio. At forced convection dominant regime, the difference between heat transfer rate for upward and downward moving wall is insensitive to the thermal conductivity ratio. For downward moving wall, average Nusselt number is higher than that of upward moving wall. Practical implications – Some applications: building applications, furnace design, nuclear reactors, air solar collectors. Originality/value – From the bibliographic work and the authors’ knowledge, the conjugate mixed convection in lid-driven partially porous enclosures has not yet been investigated which motivates the present work that represent a continuation of the preceding investigations.


Author(s):  
Yasin Varol ◽  
Hakan F. Oztop ◽  
Ioan Pop

PurposeThe purpose of this paper is to study the conjugate heat transfer via natural convection and conduction in a triangular enclosure filled with a porous medium.Design/methodology/approachDarcy flow model was used to write governing equations with Boussinesq approximation. The transformed governing equations are solved numerically using a finite difference technique. It is assumed that the enclosure consists of a conducting bottom wall of finite thickness, an adiabatic (insulated) vertical wall and a cooled inclined wall.FindingsFlow patterns, temperature and heat transfer were presented at different dimensionless thickness of the bottom wall, h, from 0.05 to 0.3, different thermal conductivity ratio between solid material and fluid, k, from 0.44 to 283 and Rayleigh numbers, Ra, from 100 to 1000. It is found that both thermal conductivity ratio and thickness of the bottom wall can be used as control parameters for heat transport and flow field.Originality/valueIt is believed that this is the first paper on conduction‐natural convection in porous media filled triangular enclosures with thick wall. In the last years, most of the researchers focused on regular geometries such as rectangular or square cavity bounded by thick wall.


Author(s):  
Fervent Urebho Ighalo ◽  
Tunde Bello-Ochende ◽  
Josua Petrus Meyer

This study concerns the geometric design of a cylindrical micropin-fin heat sink with multiple row configurations. The objective is to maximize the rate of heat transfer from the solid to the fluid subject to total fin volume and manufacturing constraints. A heat sink with dimensions of 1 mm × 0.6 mm × 1 mm is used for the computational analysis. An automated gradient-based optimization algorithm, which effectively handles an objective function obtained from a computational fluid dynamics simulation is implemented. The optimal design is obtained as results of balance of conductive heat transfer along the pin-fins with laminar forced convection. In the first case, the fins are arranged in two rows of pin-fins with different geometric sizes (diameter, height, and spacing between the fins). The optimal configurations obtained as a function of thermal conductivity ratio and Reynolds number are found to be in good agreement with those obtained from theory and numerical optimization. In the second case, the fins are arranged in rows of three, the effect of thermal conductivity and Reynolds number on the optimal configuration and the maximized heat transfer rate from the arrays of cylinders is reported.


2000 ◽  
Vol 123 (4) ◽  
pp. 790-795 ◽  
Author(s):  
S. Kiwan ◽  
M. A. Al-Nimr

This work introduces a novel method that enhances the heat transfer from a given surface by using porous fins. The thermal performance of porous fins is estimated and compared with that of the conventional solid fins. It is found that using porous fin of porosity ε may enhance the performance of an equal size conventional solid fin and, as a result, save 100 ε percent of the fin material. The effect of different design and operating parameters on the porous fin thermal performance is investigated. Examples of these parameters are Ra number, Da number, and thermal conductivity ratio. It is found that more enhancement in the porous fin performance may be achieved as Ra increases especially at large Da numbers. Also, it is found that there is an optimum limit for the thermal conductivity ratio beyond which there is no further improvement in the fin performance.


Author(s):  
Darryl Jennings ◽  
Sonya Smith

The goal of this research is to present an analytical model of nanostructures and study the effects of their geometry on the performance of micro channels. The pressure drop experienced by micro channels is of interest as it presents a limit on forced convection heat transfer. This work will demonstrate how the presence of nanostructures alleviates pressure drop and results in enhanced cooling capabilities. Multiple transient analyses were performed in ANSYS FLUENT to ascertain performance characteristics of microchannels without the presence of hydrophobic nanostructures. The results were compared to the analytical model developed in this study.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Georgios Karamanis ◽  
Marc Hodes

We consider conjugate forced-convection heat transfer in a rectangular duct. Heat is exchanged through the isothermal base of the duct, i.e., the area comprised of the wetted portion of its base and the roots of its two side walls, which are extended surfaces within which conduction is three-dimensional. The opposite side of the duct is covered by an adiabatic shroud, and the external faces of the side walls are adiabatic. The flow is steady, laminar, and simultaneously developing, and the fluid and extended surfaces have constant thermophysical properties. Prescribed are the width of the wetted portion of the base, the length of the duct, and the thickness of the extended surfaces, all three of them nondimensionalized by the hydraulic diameter of the duct, and, additionally, the Reynolds number of the flow, the Prandtl number of the fluid, and the fluid-to-extended surface thermal conductivity ratio. Our conjugate Nusselt number results provide the local one along the extended surfaces, the local transversely averaged one over the isothermal base of the duct, the average of the latter in the streamwise direction as a function of distance from the inlet of the domain, and the average one over the whole area of the isothermal base. The results show that for prescribed thermal conductivity ratio and Reynolds and Prandtl numbers, there exists an optimal combination of the dimensionless width of the wetted portion of the base, duct length, and extended surface thickness that maximize the heat transfer per unit area from the isothermal base.


Sign in / Sign up

Export Citation Format

Share Document