Numerical study on structures formed by the deposition and solidification of a single molten droplet

2020 ◽  
Vol 98 (10) ◽  
pp. 907-916
Author(s):  
Wenbin Li ◽  
Ying Zhang ◽  
Yue Chen ◽  
Peisheng Li ◽  
Chunhong Ma

The formed structure is of importance in determining the surface quality of a component made by droplet-based 3D printing. In the present work, the molten droplet solicitation process was simulated under an axisymmetric system where the smallest length scale and time scale were fully resolved. Evolutions of sharp droplet interfaces were captured through the front tracking method. Parametric studies have been carried out to explore how the dynamic metrics, which include the Ohnesorge number (Oh) and Weber number (We), can affect the structure of depositing droplet. The effect of the superheat parameter on the cooling rate was also investigated in the final section. Numerical results show that the inertial resisting force is critical dynamics in the variation of horizontal dimensionless length at the early deposition process. Three levels of Oh numbers and stages of We numbers were classified according to the deformation behavior. Flattening degree under different Oh number and We number cases were both fitted well by the exponential function. This paper also reveals that the variation law of the cooling rate and solidification time is affected by the superheat parameter, resulting in a feasible and promising method to predict droplet deformation time through the fully resolved numerical simulations during the manufacturing process.

Author(s):  
M'hamed Outanoute ◽  
Hamid Garmani ◽  
Mohamed Baslam ◽  
Rachid El Ayachi ◽  
Belaid Bouikhalene

In internet market, content providers (CPs) continue to play a primordial role in the process of accessing different types of data. Competition in this area is fierce; customers are looking for providers that offer them good content (credibility of content and quality of service) with a reasonable price. In this work, the authors analyze this competition between CPs and the economic influence of their strategies on the market. The authors formulate their problem as a non-cooperative game among multiple CPs for the same market. Through a detailed analysis, the researchers prove uniqueness of a pure Nash Equilibrium (NE). Furthermore, a fully distributed algorithm to converge on the NE point is presented. In order to quantify how efficient the NE point is, a detailed analysis of the Price of Anarchy (PoA) is adopted to ensure the performance of the system at equilibrium. Finally, an extensive numerical study is provided to describe the interactions between CPs and to point out the importance of quality of service (QoS) and credibility of content in the market.


Author(s):  
Byoungdo Lee ◽  
Weishen Chu ◽  
Wei Li

Abstract Low-pressure chemical vapor deposition (LPCVD) is the most efficient method to synthesize large-scale, high-quality graphene for many potential applications such as flexible electronics, solar cells, and separation membranes. The quality of LPCVD is affected by process variables including methane/hydrogen (CH4/H2) ratio, time, pressure, temperature, and cooling rate. The cooling rate has been recognized as one of the most important process variables affecting the amount of carbon source, nucleation, reaction time, and thus the quality of the LPCVD. In this research, we investigate the effect of cooling rate on the quality of graphene synthesize by changing the cooling rate and the gas feeding time. Graphene coverage is measured by Raman mapping. It is found that fast cooling rate leads to decreased carbon source reaction time, which in turn results in higher coverage by monolayer graphene. The temperature-dependent gas feeding time corresponding to different cooling rates can be used to properly supply the carbon source onto the copper surface, also leading to a higher graphene coverage.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rafael Kakitani ◽  
Cassio Augusto Pinto da Silva ◽  
Bismarck Silva ◽  
Amauri Garcia ◽  
Noé Cheung ◽  
...  

Purpose Overall, selection maps about the extent of the eutectic growth projects the solidification velocities leading to given microstructures. This is because of limitations of most of the set of results when obtained for single thermal gradients within the experimental spectrum. In these cases, associations only with the solidification velocity could give the false impression that reaching a given velocity would be enough to reproduce a result. However, that velocity must necessarily be accompanied by a specific thermal gradient during transient solidification. Therefore, the purpose of this paper is to not only project velocity but also include the gradients acting for each velocity. Design/methodology/approach Compilation of solidification velocity, v, thermal gradient, G, and cooling rate, Ṫ, data for Sn-Cu and Sn-Bi solder alloys of interest is presented. These data are placed in the form of coupled growth zones according to the correlated microstructures in the literature. In addition, results generated in this work for Sn-(0.5, 0.7, 2.0, 2.8)% Cu and Sn-(34, 52, 58)% Bi alloys solidified under non-stationary conditions are added. Findings When analyzing the cooling rate (Ṫ = G.v) and velocity separately, in or around the eutectic composition, a consensus cannot be reached on the resulting microstructure. The (v vs. G) + cooling rate diagrams allow comprehensive analyzes of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys. Originality/value The present paper is devoted to the establishment of (v vs. G) + cooling rate diagrams. These plots may allow comprehensive analyses of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys. This microstructure-processing mapping approach is promising to predict phase competition and resulting microstructures in soldering of Sn-Cu and Sn-Bi alloys. These two classes of alloys are of interest to the soldering industry, whereas manipulation of their microstructures is considered of utmost importance for the metallurgical quality of the product.


2012 ◽  
Vol 77 (9) ◽  
pp. 1239-1242
Author(s):  
Rastko Vasilic

The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD) was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV) and scanning tunneling microscopy (STM) are employed to carry out and monitor a ?quasi-perfect?, two-dimensional growth of Ag on Au(111), Cu on Ag(111), and Cu on Au(111) by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 982 ◽  
Author(s):  
Dazhi Pu ◽  
Guanghua Wen ◽  
Dachao Fu ◽  
Ping Tang ◽  
Junli Guo

In the continuous casting process, the shrinkage of the peritectic phase transition during the initial solidification process has an important influence on the surface quality of peritectic steel. The initial solidification process of 0.10C%, 0.14C%, and 0.16C% peritectic steels was observed in situ by a high temperature laser confocal microscope, and the contraction degree during initial solidification was characterized by surface roughness. The results showed that under the cooling rate of 20 °C/s, the surface roughness value Ra(δ/γ) of 0.10C% peritectic steel was 32 μm, the Ra(δ/γ) value of 0.14C% peritectic steel was 25 μm, and the Ra(δ/γ) value of 0.16C% peritectic steel was 17 μm. With increasing carbon content, the contraction degree of the δ→γ transformation decreased, and the value of the surface roughness Ra(δ/γ) declined. Therefore, surface roughness can characterize the contraction degree of the δ→γ transformation in the initial solidification process of peritectic steel under the condition of a large cooling rate.


Author(s):  
Mohammadhossein Amini ◽  
Shing Chang

Metal 3D printing is one of the fastest growing additive manufacturing (AM) technologies in recent years. Despite the improvements and capabilities, reliable metal printing is still not well understood. One of the barriers of industrialization of metal AM is process monitoring and quality assurance of the printed product. These barriers are especially much highlighted in aerospace and medical device manufacturing industries where the high reliability and quality is needed. Selective Laser Melting (SLM) is one of the main metal 3D printing methods where it is known that more than 50 parameters are affecting the quality of the print. However, the current SLM printing process barely utilize a fraction of the collected data during production. Up to this point, no study to the best of our knowledge examines the correlation of factors affecting the quality of the print. After reviewing the current state of the art of process monitoring for metal AM involving SLM, we propose a method to control the process of the print in each layer and prevent the defects using data-driven techniques. A numerical study using simulated numbers is provided to demonstrate how the proposed method can be implemented.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amir Moslemi ◽  
Mahmood Shafiee

PurposeIn a multistage process, the final quality in the last stage not only depends on the quality of the task performed in that stage but is also dependent on the quality of the products and services in intermediate stages as well as the design parameters in each stage. One of the most efficient statistical approaches used to model the multistage problems is the response surface method (RSM). However, it is necessary to optimize each response in all stages so to achieve the best solution for the whole problem. Robust optimization can produce very accurate solutions in this case.Design/methodology/approachIn order to model a multistage problem, the RSM is often used by the researchers. A classical approach to estimate response surfaces is the ordinary least squares (OLS) method. However, this method is very sensitive to outliers. To overcome this drawback, some robust estimation methods have been presented in the literature. In optimization phase, the global criterion (GC) method is used to optimize the response surfaces estimated by the robust approach in a multistage problem.FindingsThe results of a numerical study show that our proposed robust optimization approach, considering both the sum of square error (SSE) index in model estimation and also GC index in optimization phase, will perform better than the classical full information maximum likelihood (FIML) estimation method.Originality/valueTo the best of the authors’ knowledge, there are few papers focusing on quality-oriented designs in the multistage problem by means of RSM. Development of robust approaches for the response surface estimation and also optimization of the estimated response surfaces are the main novelties in this study. The proposed approach will produce more robust and accurate solutions for multistage problems rather than classical approaches.


2020 ◽  
Vol 172 ◽  
pp. 07006
Author(s):  
Juan Sebastian Rios Mora ◽  
Bernard Collignan ◽  
Thierno Diallo ◽  
Marc Abadie ◽  
Karim Limam

Various vapour intrusion (VI) models have been proposed in order to predict indoor concentration of Volatile Organic Compounds (VOCs) in buildings. However, these models tend to be conservative, and overestimate or underestimate vapour flux emissions due to several assumptions. Particularly, most of these VI models only consider an infinite uniform contaminated groundwater as the principal source of VOCs in the soil, and lateral pollution source in the vadose zone are disregarded. It has been shown that ignoring the lateral source position may lead to uncertainties on the estimations. In this paper, a numerical model is developed in order to better understand the relationship between the lateral source position in the soil, including both a source in the vadose zone and a source located at the groundwater level, and the resulting indoor air concentration. Results show that source position plays a significant role on vapour intrusion attenuation. In fact, indoor concentration of VOCs decreases with increasing lateral separation. Finally, it is shown that considering the source position can significantly improve the quality of VI predictions.


2001 ◽  
Vol 16 (3) ◽  
pp. 633-643 ◽  
Author(s):  
H. Högberg ◽  
J. Birch ◽  
M. P. Johansson ◽  
L. Hultman ◽  
U. Jansson

Thin epitaxial TiC and VC films and superlattices have been deposited on MgO(001) by simultaneous sputtering of the metals and evaporation of C60. It was found that epitaxial growth conditions for TiC could be maintained down to a temperature of 100 °C, while the epitaxial growth of VC required 200 °C. Epitaxial VC films were completely relaxed at all growth temperatures, while a change from a relaxed to a strained growth behavior was observed for TiC films. The structural quality of the TiC films was better than for the VC films. A general observation was that a plasma-assisted deposition process yields films with a higher quality and allows epitaxial growth at lower temperatures than for a pure coevaporation process.


Sign in / Sign up

Export Citation Format

Share Document