Fermion tunneling, Instability and First Law of Rindler Modified Schwarzschild Black Hole as a Thermodynamic system

Author(s):  
S. Fatemeh Mirekhtiary ◽  
I. Sakalli ◽  
V. Bashiry

This study investigated quantum tunneling of spin half particles through the event horizon of Rindler modified Schwarzschild black hole (RMSBH) in the presence of quintessence matter. We analyzed the thermodynamics of RMSBH in the Kiselev coordinates. Particularly, exploring RMSBH's entropy and the thermal stability of the RMSBH. We showed that RMSBH serves an unstable system causing fluctuations. The integral formulation of the first law of RMSBH in the absence of cosmological constant was also represented. By using the first law, we finally studied the Ruppeiner geometry for Rindler acceleration and pressure with fixed ensembles .

2021 ◽  
Vol 36 (27) ◽  
pp. 2150195
Author(s):  
Aloke Kumar Sinha

The criteria for thermal stability of a most general quantum black hole derived by us appeared in the form of a series of inequalities connecting second-order derivatives of black hole mass with respect to its parameters, which determine the mass of the black hole. These nullify the concept of positivity of specific heat as the sole criteria for thermal stability. Using this most general stability criterion, we prove here that AdS Schwarzschild black holes are no longer stable anywhere in their parameter space if cosmological constant is allowed to vary. We also calculate the fluctuations of both horizon area and cosmological constant of this black hole. We calculate specific heat of it and compare this with Hawking’s prediction.


2021 ◽  
pp. 2150071
Author(s):  
Aloke Kumar Sinha

We established the criteria for thermal stability of a most general black hole in the form of a series of inequalities connecting second-order derivatives of the black hole mass with respect to its parameters. The mass of a black hole depends solely on these parameters, e.g. horizon area and electric charge are these parameters for non-rotating charged black hole. We also introduced the notion of “Quasi stability”. It is known how to calculate the fluctuations of these parameters for both stable and quasi stable black holes. In this paper, we consider the simplest black hole having nontrivial parameter, i.e. electrically charged non-rotating asymptotically flat Reissner–Nordstrom black hole (AFRNBH). We will show here that this black hole is not stable anywhere in its parameter space, but it is actually quasi stable, having positive specific heat in some region, violating Hawking’s prediction. In fact, this black hole will be shown to exhibit phase transition which is structurally quite different from that in case of Schwarzschild black hole, as predicted first by Hawking. This black hole will also be shown to try to resist its decay under Hawking radiation, but ultimately remains unsuccessful.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1379-1384 ◽  
Author(s):  
H. CULETU

A direct relation between the time-dependent Milne geometry and the Rindler spacetime is shown. Milne's metric corresponds to the region beyond Rindler's event horizon (in the wedge t ≻ |x|). We point out that inside a Schwarzschild black hole and near its horizon, the metric may be Milne's flat metric. It was found that the shear tensor associated to a congruence of fluid particles of the RHIC expanding fireball has the same structure as that corresponding to the anisotropic fluid from the black hole interior, even though the latter geometry is curved.


Author(s):  
Pawel Gusin ◽  
Andy Augousti ◽  
Filip Formalik ◽  
Andrzej Radosz

A black hole in a Schwarzschild spacetime is considered. A transformation is proposed that describes the relationship between the coordinate systems exterior and interior to an event horizon. Application of this transformation permits considerations of the (a)symmetry of a range of phenomena taking place on both sides of the event horizon. The paper investigates two distinct problems of a uniformly accelerated particle. In one of these, although the equations of motion are the same in the regions on both sides, the solutions turn out to be very different. This manifests the differences of the properties of these two ranges.


2021 ◽  
Author(s):  
José Hernández Ramírez

Abstract We consider a Schwarzschild black hole type in this work whose particles, only those that lies on its surface, the event horizon (r+), contributes to the entropy and we found it by using the canonical ensemble. We don’t consider any interaction between this particles, but the inner energy.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Bei Sha ◽  
Zhi-E Liu ◽  
Xia Tan ◽  
Yu-Zhen Liu ◽  
Jie Zhang

The quantum tunneling radiation of fermions with arbitrary spin at the event horizon of Kerr-de Sitter black hole is accurately modified by using the dispersion relation proposed in the study of string theory and quantum gravitational theory. The derived tunneling rate and temperature at the black hole horizons are analyzed and studied.


Author(s):  
Grigory Volovik

The thermodynamics of black holes is discussed for the case, when the Newton constant G is not a constant, but is the thermodynamic variable. This gives for the first law of the Schwarzschild black hole thermodynamics: d S BH = − A d K + d M T BH , where the gravitational coupling K = 1 / 4 G , M is the black hole mass, A is the area of horizon, and T BH is Hawking temperature. From this first law it follows that the dimensionless quantity M 2 / K is the adiabatic invariant, which in principle can be quantized if to follow the Bekenstein conjecture. From the Euclidean action for the black hole it follows that K and A serve as dynamically conjugate variables. This allows us to calculate the quantum tunneling from the black hole to the white hole, and determine the temperature and entropy of the white hole.


2016 ◽  
Vol 31 (17) ◽  
pp. 1650106 ◽  
Author(s):  
Yong-Wan Kim ◽  
Young-Jai Park

We obtain a (5+1)-dimensional global flat embedding of modified Schwarzschild black hole in rainbow gravity. We show that local free-fall temperature in rainbow gravity, which depends on different energy [Formula: see text] of a test particle, is finite at the event horizon for a freely falling observer, while local temperature is divergent at the event horizon for a fiducial observer. Moreover, these temperatures in rainbow gravity satisfy similar relations to those of the Schwarzschild black hole except the overall factor [Formula: see text], which plays a key role of rainbow functions in this embedding approach.


Sign in / Sign up

Export Citation Format

Share Document