Role of Rho-GTPases and their regulatory proteins in glomerular podocyte function

2013 ◽  
Vol 91 (10) ◽  
pp. 773-782 ◽  
Author(s):  
Flaviana Mouawad ◽  
Harmony Tsui ◽  
Tomoko Takano

Podocytes play a critical role in maintaining glomerular permselectivity. It has been long recognized that their intricate actin-based structures are tightly associated with their normal function; however, the precise mechanisms by which podocytes form and maintain their complex structure had been poorly understood until the intensive investigations on podocyte biology began in 1998, triggered by the breakthrough discovery of nephrin. This review summarizes the recent discoveries of the molecular mechanisms by which the actin cytoskeleton is regulated in podocytes. A particular focus will be on the role of the Rho-family of small GTPases, represented by RhoA, Rac1, and Cdc42. Rho-GTPases are known for their versatile cellular functions, most importantly for the actin regulatory roles. We will also discuss the potential roles of the 3 groups of proteins known to regulate Rho-GTPases, namely GTPase-activating proteins, guanine nucleotide exchange factors, and guanine nucleotide dissociation inhibitors.

1999 ◽  
Vol 147 (5) ◽  
pp. 921-928 ◽  
Author(s):  
Takashi Tatsumoto ◽  
Xiaozhen Xie ◽  
Rayah Blumenthal ◽  
Isamu Okamoto ◽  
Toru Miki

Animal cells divide into two daughter cells by the formation of an actomyosin-based contractile ring through a process called cytokinesis. Although many of the structural elements of cytokinesis have been identified, little is known about the signaling pathways and molecular mechanisms underlying this process. Here we show that the human ECT2 is involved in the regulation of cytokinesis. ECT2 catalyzes guanine nucleotide exchange on the small GTPases, RhoA, Rac1, and Cdc42. ECT2 is phosphorylated during G2 and M phases, and phosphorylation is required for its exchange activity. Unlike other known guanine nucleotide exchange factors for Rho GTPases, ECT2 exhibits nuclear localization in interphase, spreads throughout the cytoplasm in prometaphase, and is condensed in the midbody during cytokinesis. Expression of an ECT2 derivative, containing the NH2-terminal domain required for the midbody localization but lacking the COOH-terminal catalytic domain, strongly inhibits cytokinesis. Moreover, microinjection of affinity-purified anti-ECT2 antibody into interphase cells also inhibits cytokinesis. These results suggest that ECT2 is an important link between the cell cycle machinery and Rho signaling pathways involved in the regulation of cell division.


2010 ◽  
Vol 78 (4) ◽  
pp. 1417-1425 ◽  
Author(s):  
Richard Bulgin ◽  
Benoit Raymond ◽  
James A. Garnett ◽  
Gad Frankel ◽  
Valerie F. Crepin ◽  
...  

ABSTRACT Subversion of Rho family small GTPases, which control actin dynamics, is a common infection strategy used by bacterial pathogens. In particular, Salmonella enterica serovar Typhimurium, Shigella flexneri, enteropathogenic Escherichia coli (EPEC), and enterohemorrhagic Escherichia coli (EHEC) translocate type III secretion system (T3SS) effector proteins to modulate the Rho GTPases RhoA, Cdc42, and Rac1, which trigger formation of stress fibers, filopodia, and lamellipodia/ruffles, respectively. The Salmonella effector SopE is a guanine nucleotide exchange factor (GEF) that activates Rac1 and Cdc42, which induce “the trigger mechanism of cell entry.” Based on a conserved Trp-xxx-Glu motif, the T3SS effector proteins IpgB1 and IpgB2 of Shigella, SifA and SifB of Salmonella, and Map of EPEC and EHEC were grouped together into a WxxxE family; recent studies identified the T3SS EPEC and EHEC effectors EspM and EspT as new family members. Recent structural and functional studies have shown that representatives of the WxxxE effectors share with SopE a 3-D fold and GEF activity. In this minireview, we summarize contemporary findings related to the SopE and WxxxE GEFs in the context of their role in subverting general host cell signaling pathways and infection.


2020 ◽  
Vol 31 (5) ◽  
pp. 996-1008 ◽  
Author(s):  
Jun Matsuda ◽  
Mirela Maier ◽  
Lamine Aoudjit ◽  
Cindy Baldwin ◽  
Tomoko Takano

BackgroundPrevious studies showed that Cdc42, a member of the prototypical Rho family of small GTPases and a regulator of the actin cytoskeleton, is critical for the normal development and health of podocytes. However, upstream regulatory mechanisms for Cdc42 activity in podocytes are largely unknown.MethodsWe used a proximity-based ligation assay, BioID, to identify guanine nucleotide exchange factors that activate Cdc42 in immortalized human podocytes. We generated podocyte-specific ARHGEF7 (commonly known as β-PIX) knockout mice by crossing β-PIX floxed mice with Podocin-Cre mice. Using shRNA, we established cultured mouse podocytes with β-PIX knockdown and their controls.ResultsWe identified β-PIX as a predominant guanine nucleotide exchange factor that interacts with Cdc42 in human podocytes. Podocyte-specific β-PIX knockout mice developed progressive proteinuria and kidney failure with global or segmental glomerulosclerosis in adulthood. Glomerular podocyte density gradually decreased in podocyte-specific β-PIX knockout mice, indicating podocyte loss. Compared with controls, glomeruli from podocyte-specific β-PIX knockout mice and cultured mouse podocytes with β-PIX knockdown exhibited significant reduction in Cdc42 activity. Loss of β-PIX promoted podocyte apoptosis, which was mediated by the reduced activity of the prosurvival transcriptional regulator Yes-associated protein.ConclusionsThese findings indicate that β-PIX is required for the maintenance of podocyte architecture and glomerular function via Cdc42 and its downstream Yes-associated protein activities. This appears to be the first evidence that a Rho–guanine nucleotide exchange factor plays a critical role in podocytes.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1092 ◽  
Author(s):  
Brock A. Humphries ◽  
Zhishan Wang ◽  
Chengfeng Yang

The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.


2020 ◽  
Vol 21 ◽  
Author(s):  
Lin Gao ◽  
Lingbo Kong ◽  
Yuanting Zhao

: Pathological bone loss diseases (osteolysis, Paget’s diseases) are commonly caused by the over differentiation and activity of osteoclasts. The Rho GTPases family members Rac1/2 (Rac1 and Rac2) have been reported for their special role in exerting multiple cellular functions during osteoclastic differentiation, which including the most prominent function on dynamic actin cytoskeleton rearranging. Besides that, the increasing studies demonstrated the regulating effects of Rac1/2 on osteoclastic cytoskeletal organization is through the GEFs member Dock5. Although the amount of relevant studies on this topic still limited, there are several excellent studies have been reported for extensively explored the molecular mechanisms involved in Rac1/2 and Dock5 during the osteoclastogenesis regulation, as well as their role as the therapeutic target in bone loss disesases. Herein in this review, we aim to focus on recent advances studies for extensively understanding the role of Rho GTPases Rac1/2 and Dock5 in osteoclastogenesis, as well as their role as a potential therapeutic target in regulating osteoclastogenesis.


1999 ◽  
Vol 276 (6) ◽  
pp. G1484-G1492 ◽  
Author(s):  
Yoshiaki Takeuchi ◽  
Nonthalee Pausawasdi ◽  
Andrea Todisco

We previously reported that both carbachol and epidermal growth factor (EGF) are potent inducers of the extracellular signal-regulated protein kinases (ERKs) in isolated gastric canine parietal cells and that induction of these kinases leads to acute inhibitory and chronic stimulatory effects on gastric acid secretion. In this study we investigated the molecular mechanisms responsible for these effects. Both carbachol (100 μM) and EGF (10 nM) induced Ras activation. The role of Ras in ERK2 induction was examined by transfecting parietal cells with a vector expressing hemoagglutinin (HA)-tagged ERK2 (HA-ERK2) together with a dominantly expressed mutant (inactive) ras gene. HA-ERK2 activity was quantitated by in-gel kinase assays. Dominant negative Ras reduced carbachol induction of HA-ERK2 activity by 60% and completely inhibited the stimulatory effect of EGF. Since Ras activation requires the assembly of a multiprotein complex, we examined the effect of carbachol and EGF on tyrosyl phosphorylation of Shc and its association with Grb2 and the guanine nucleotide exchange factor Sos. Western blot analysis of anti-Shc immunoprecipitates with an anti-phosphotyrosine antibody demonstrated that both carbachol and EGF induced tyrosyl phosphorylation of a major 52-kDa shc isoform. Grb2 association with Shc was demonstrated by blotting Grb2 immunoprecipitates with an anti-Shc antibody. Probing of anti-Sos immunoprecipitates with an anti-Grb2 antibody revealed that Sos was constitutively bound to Grb2. To examine the functional role of Sos in ERK2 activation, we transfected parietal cells with the HA-ERK2 vector together with a dominantly expressed mutant (inactive) sos gene. Dominant negative Sos did not affect carbachol stimulation of HA-ERK2 but inhibited the stimulatory effect of EGF by 60%. We then investigated the role of βγ-subunits in carbachol induction of HA-ERK2. Parietal cells were transfected with the HA-ERK2 vector together with a vector expressing the carboxy terminus of the β-adrenergic receptor kinase 1, known to block signaling mediated by βγ-subunits. In the presence of this vector, carbachol induction of HA-ERK2 was inhibited by 40%. Together these data suggest that, in the gastric parietal cells, carbachol activates the ERKs through Ras- and βγ-dependent mechanisms that require guanine nucleotide exchange factors other than Sos.


2012 ◽  
Vol 40 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Anne-Coline Laurent ◽  
Magali Breckler ◽  
Magali Berthouze ◽  
Frank Lezoualc'h

Epacs (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors for the Ras-like small GTPases Rap1 and Rap2. Epacs were discovered in 1998 as new sensors for the second messenger cAMP acting in parallel to PKA (protein kinase A). As cAMP regulates many important physiological functions in brain and heart, the existence of Epacs raises many questions regarding their role in these tissues. The present review focuses on the biological roles and signalling pathways of Epacs in neurons and cardiac myocytes. We discuss the potential involvement of Epacs in the manifestation of cardiac and central diseases such as cardiac hypertrophy and memory disorders.


2013 ◽  
Vol 304 (7) ◽  
pp. F831-F839 ◽  
Author(s):  
Shi-kun Yang ◽  
Li Xiao ◽  
Jun Li ◽  
Fuyou Liu ◽  
Lin Sun ◽  
...  

Exchange proteins directly activated by cAMP [Epac(s)] were discovered more than a decade ago as new sensors for the second messenger cAMP. The Epac family members, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2, and they function independently of protein kinase A. Given the importance of cAMP in kidney homeostasis, several molecular and cellular studies using specific Epac agonists have analyzed the role and regulation of Epac proteins in renal physiology and pathophysiology. The specificity of the functions of Epac proteins may depend upon their expression and localization in the kidney as well as their abundance in the microcellular environment. This review discusses recent literature data concerning the involvement of Epac in renal tubular transport physiology and renal glomerular cells where various signaling pathways are known to be operative. In addition, the potential role of Epac in kidney disorders, such as diabetic kidney disease and ischemic kidney injury, is discussed.


2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


Sign in / Sign up

Export Citation Format

Share Document