Combined treatments with metformin and phosphodiesterase inhibitors alleviate nonalcoholic fatty liver disease in high-fat diet fed rats: a comparative study

2020 ◽  
Vol 98 (8) ◽  
pp. 498-505
Author(s):  
Gehan H. Heeba ◽  
Reham M. El-Deen ◽  
Rania G. Abdel-latif ◽  
Mohamed M.A. Khalifa

Nonalcoholic fatty liver disease (NAFLD) is an excessive accumulation of fats in the liver resulting in hepatic inflammation and fibrous tissue formation along with insulin resistance. This study was designed to investigate the possible protective effects of metformin alone and in combination with different phosphodiesterase inhibitors (PDEIs). Rats were fed a high-fat diet (HFD) for 16 weeks to induce NAFLD. Starting from week 12, rats received metformin alone or in combination with pentoxifylline, cilostazol, or sildenafil. HFD administration resulted in hepatic steatosis and inflammation in rats. In addition, liver index, body composition index, activities of liver enzymes, and serum lipids deviated from normal. Further, significant elevations were recorded compared to control in terms of serum glucose, insulin, and HOMA-IR (homeostasis model assessment index for insulin resistance), oxidative stress parameters, hepatic TNF-α and NF-κB gene expression, and iNOS protein expression. Rats treated with metformin showed a significant improvement in the aforementioned parameters. However, the addition of pentoxifylline to metformin treatment synergized its action and produced a fortified effect against HFD-induced NAFLD better than other PDEIs. Data from this study indicated that combined treatment of metformin and pentoxifylline had the most remarkable ameliorated effects against HFD-induced NAFLD; further clinical investigations are needed to approve PDEIs for NAFLD treatment.

2018 ◽  
Vol 17 (5) ◽  
pp. 0-10
Author(s):  
Hong-Shan Li ◽  
Hao Ying ◽  
Zhe-Yun He

Introduction and aim. Salidroside and curcumin (SC) formula could alleviate lipid deposition in high fat diet-induced nonalcoholic fatty liver disease (NAFLD). However, the mechanisms are still unknown, and the magnitude of potential therapeutic benefit remains understudied. Material and methods. The rats were treated with high fat diet for 14 weeks to induce NAFLD. The experiment was divided into control, model (NAFLD), SC formula and rosiglitazone groups (n = 7 in each group). Hematoxylin-eosin (H&E) staining was applied to detect liver morphological changes. Biochemical, metabolic indices and inflammation factors in liver tissue and serum were detected. Additionally, the activities of related enzymes were detected by enzyme-linked immunosorbent assay. Results. In the established rat model, typical lipid deposition and liver steatosis were observed. Liver triglyceride, free fatty acids, sera alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, fasting insulin, fasting blood glucose and homeostasis model assessment of insulin resistance were elevated in model group. Liver malondialdehyde was significantly elevated, while superoxide dismutase was significantly decreased in model group, compared with control. Moreover, tumor necrosis factor-α and Interleukin-1 were significantly produced in model group, compared with control. As a mechanism, high fat diet decreased tissue AMP-activated protein kinase (AMPK), phosphorylated AMPK, carnitine palmitoyltransferase 1 and increased inacetyl-CoA carboxylase (ACCase), phosphorylated ACCase. Importantly, these abnormal changes caused by high fat diet were reduced by SC formula administration. Conclusion. SC formula could ameliorate the injury caused by high fat diet. The effect was likely mediated via its influence on insulin resistance, lipid peroxidation injury and AMPK signaling pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yong Xie ◽  
Yi Zhang ◽  
Zebin Guo ◽  
Hongliang Zeng ◽  
Baodong Zheng

This study aimed to investigate the effects of total alkaloids from Nelumbinis Plumula (NPA) on insulin resistance (IR) of high-fat diet- (HFD-) induced nonalcoholic fatty liver disease (NAFLD). Rats were fed with HFD for 8 weeks to induce NAFLD. Then, the effect of NPA on ameliorating IR in HFD-induced NAFLD was evaluated. Fasting serum insulin was determined using an enzyme-linked immunosorbent assay (ELISA) kit for insulin following the manufacturer’s protocol. Some inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) were determined using ELISA kits to assess the inflammatory burden in rats. The results showed that HFD could induce a significant increase in blood glucose and IR in rats. However, rats treated with NPA (400 or 600 mg/kg) showed improved IR and reduction in serum inflammatory cytokines TNF-αand IL-6. Further investigation indicated that NPA could inhibit IR by restoring the insulin receptor substrate-1 (IRS-1) and suppressing the expression of c-Jun N-terminal kinase (JNK) phosphorylation. The present results supported the view that the pathogenesis of NAFLD was complex with inflammation, together with increasing serum glucose and IR. Also, JNK and IRS phosphorylation were suggested for their involvement in the modulating of IR during NAFLD progression. Therefore, NPA may serve as a potential natural remedy against IR in NAFLD.


Aging ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 8960-8974
Author(s):  
Xiaoli Qian ◽  
Ting Wang ◽  
Jiahong Gong ◽  
Li Wang ◽  
Xuyan Chen ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Doo Jin Choi ◽  
Seong Cheol Kim ◽  
Gi Eun Park ◽  
Bo-Ram Choi ◽  
Dae Young Lee ◽  
...  

The present study aimed to evaluate the potential synergistic and protective effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extract in a ratio of 7 : 3, against hepatic steatosis in high fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) mice. Forty-eight mice were randomly divided into eight groups and orally administered daily for 6 weeks with a normal diet (ND) or high fat diet alone (HFD), HFD with AM (HFD + 100 mg/kg AM extract), HFD with LE (HFD + 100 mg/kg LE extract), HFD with ALM16 (HFD + 50, 100, and 200 mg/kg ALM16), or HFD with MT (HFD + 100 mg/kg Milk thistle extract) as a positive control. ALM16 significantly decreased the body and liver weight, serum and hepatic lipid profiles, including triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL), and low-density lipoprotein-cholesterol (LDL), and serum glucose levels, compared to the HFD group. Moreover, ALM16 significantly ameliorated the HFD-induced increased hepatic injury markers, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma-glutamyltransferase (GGT)-1. Furthermore, as compared to the mice fed HFD alone, ALM16 increased the levels of phosphorylated AMP-activated protein kinase (p-AMPK) and acetyl-CoA carboxylase (p-ACC), thereby upregulating the expression of carnitine palmitoyltransferase (CPT)-1 and downregulating the expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS). These results demonstrated that ALM16 markedly inhibited HFD-induced hepatic steatosis in NAFLD mice by modulating AMPK and ACC signaling pathways, and may be more effective than the single extracts of AM or LE.


Sign in / Sign up

Export Citation Format

Share Document