Hidden Cretaceous basins in Nova Scotia

2001 ◽  
Vol 38 (9) ◽  
pp. 1335-1354 ◽  
Author(s):  
Rudolph R Stea ◽  
Susan E Pullan

Early Cretaceous unconsolidated quartz sand and kaolinitic clay deposits in the lowlands of Nova Scotia are preserved in narrow half-grabens obscured by glacial drift. The Chaswood Formation sediments can be subdivided into three members; upper and lower members dominated by cyclical sand–mud facies of fluvial origin and the middle member with lignitic clay of lacustrine origin. Ferruginous oxisols are common in the fine-grained facies of the upper and lower members. Seismic data indicate that Chaswood Formation strata in the Elmsvale Basin are deformed into steeply dipping faults and fault-related folds (Rutherford Road fault zone). An Aptian–Albian age for this tectonic event is inferred from synsedimentary deformation and from the angular unconformity spanning the Late Cretaceous and Tertiary that truncates the Chaswood Formation. Exhumation of a thick cover of Mesozoic sediment (1–2 km) is needed to account for the preservation of Chaswood Formation outliers after ~80 Ma of erosion. The half-grabens that host the Chaswood Formation were formed in the Mesozoic and were antecedent to the present-day structurally controlled lowlands.

2014 ◽  
Vol 04 (10) ◽  
pp. 1049-1061
Author(s):  
Shazia Asim ◽  
Nasir Khan ◽  
Shahid Nadeem Qureshi ◽  
Farrukh Hussain ◽  
Saeed Ahmed Bablani

Author(s):  
Adrián Alujas Díaz ◽  
Roger S Almenares Reyes ◽  
Florencio Arcial Carratalá ◽  
José F. Martirena Hernández

2021 ◽  
Vol 4 (2) ◽  
pp. 12-18
Author(s):  
D.A. Tolypin ◽  
N. Tolypina

the article proposes a rational method for processing 3D printing concrete scrap using vibration equipment, which allows obtaining a multicomponent building material with minimal electricity consumption. As a crite-rion for the degree of grinding of concrete scrap, it is proposed to use the specific surface area of the finely dispersed part of concrete scrap, which should correspond to 400-500 m2/kg. The possibility of reusing the resulting product instead of the traditional fine aggregate of quartz sand is shown. It was found that the con-crete scrap without the addition of Portland cement hardens, reaching up to 48% of the compressive strength of the control samples by 28 days. When 10% of the binder CEM I 42.5 N was added to the concrete scrap processing product, the compressive strength of fine-grained concrete increased by 106.6%, and 20% of Portland cement - by 112.2 %, compared to the strength of control samples of a similar composition on tra-ditional quartz sand after 28 days of hardening. It is noted that this is primarily due to the weak contact zone of quartz sand and the cement matrix of concrete. The use of the product of processing concrete scrap al-lows obtaining building composites based on it with the complete exclusion of natural raw materials


2021 ◽  
Author(s):  
Piotr Krzywiec ◽  
Łukasz Słonka ◽  
Quang Nguyen ◽  
Michał Malinowski ◽  
Mateusz Kufrasa ◽  
...  

<p>In 2016, approximately 850 km of high-resolution multichannel seismic reflection data of the BALTEC survey have been acquired offshore Poland within the transition zone between the East European Craton and the Paleozoic Platform. Data processing, focused on removal of multiples, strongly overprinting geological information at shallower intervals, included SRME, TAU-P domain deconvolution, high resolution parabolic Radon demultiple and SWDM (Shallow Water De-Multiple). Entire dataset was Kirchhoff pre-stack time migrated. Additionally, legacy shallow high-resolution multichannel seismic reflection data acquired in this zone in 1997 was also used. All this data provided new information on various aspects of the Phanerozoic evolution of this area, including Late Cretaceous to Cenozoic tectonics and sedimentation. This phase of geological evolution could be until now hardly resolved by analysis of industry seismic data as, due to limited shallow seismic imaging and very strong overprint of multiples, essentially no information could have been retrieved from this data for first 200-300 m. Western part of the BALTEC dataset is located above the offshore segment of the Mid-Polish Swell (MPS) – large anticlinorium formed due to inversion of the axial part of the Polish Basin. BALTEC seismic data proved that Late Cretaceous inversion of the Koszalin – Chojnice fault zone located along the NE border of the MPS was thick-skinned in nature and was associated with substantial syn-inversion sedimentation. Subtle thickness variations and progressive unconformities imaged by BALTEC seismic data within the Upper Cretaceous succession in vicinity of the Kamień-Adler and the Trzebiatów fault zones located within the MPS documented complex interplay of Late Cretaceous basin inversion, erosion and re-deposition. Precambrian basement of the Eastern, cratonic part of the study area is overlain by Cambro-Silurian sedimentary cover. It is dissected by a system of steep, mostly reverse faults rooted in most cases in the deep basement. This fault system has been regarded so far as having been formed mostly in Paleozoic times, due to the Caledonian orogeny. As a consequence, Upper Cretaceous succession, locally present in this area, has been vaguely defined as a post-tectonic cover, locally onlapping uplifted Paleozoic blocks. New seismic data, because of its reliable imaging of the shallowest substratum, confirmed that at least some of these deeply-rooted faults were active as a reverse faults in latest Cretaceous – earliest Paleogene. Consequently, it can be unequivocally proved that large offshore blocks of Silurian and older rocks presently located directly beneath the Cenozoic veneer must have been at least partly covered by the Upper Cretaceous succession; then, they were uplifted during the widespread inversion that affected most of Europe. Ensuing regional erosion might have at least partly provided sediments that formed Upper Cretaceous progradational wedges recently imaged within the onshore Baltic Basin by high-end PolandSPAN regional seismic data. New seismic data imaged also Paleogene and younger post-inversion cover. All these results prove that Late Cretaceous tectonics substantially affected large areas located much farther towards the East than previously assumed.</p><p>This study was funded by the Polish National Science Centre (NCN) grant no UMO-2017/27/B/ST10/02316.</p>


2021 ◽  
Author(s):  
Saskia Köhler ◽  
Daniel Koehn

<p>The importance of paleostress analysis is dramatically increasing due to its application in diverse fields, such as sustainable exploration of resources, reservoir potential or storage sites. A good understanding of the subsurface geology, the geological stress-history and associated fracture and fault networks is essentially for these applications. Understanding of the complete paleostress history is not only of interest for applied research, but also for an understanding of the dynamics of geological processes in general. In recent years a diverse toolbox of stress inversion methods has been developed including stress inversion from tectonic stylolites (and slikolites). The pressure solution structures not only preserve the direction of the largest principle stress – they are an archive for the complete stress tensor and the absolute stress magnitude at the moment of their development. Here we present the first results of a systematic study of this upcoming method. For comparison we preformed roughness analysis of tectonic stylolites from Mesozoic limestone from SE Germany. In late Cretaceous the area was affected by shortening in a NE-SW direction, which is clearly illustrated by fault-slip analysis and the orientation of tectonic stylolites. During this tectonic event the stress regime changed from thrusting to strike-slip, with the sampled stylolites persevering the transition between these two stress events. With our preliminarily results we show that roughness analysis of tectonic stylolites enables us to record short time intervals during phases of contraction, and therefore offers crucial insights into stress history and tectonic processes with pulsating stress fields.</p>


2020 ◽  
Vol 157 (8) ◽  
pp. 1316-1332
Author(s):  
Zhuanrong Sun ◽  
Guochen Dong ◽  
M Santosh ◽  
Xuanxue Mo ◽  
Pengsheng Dong ◽  
...  

AbstractThe Tengchong Block within the Sanjiang Tethys belt in the southeastern part of the Tibetan plateau experienced a widespread intrusion of a felsic magmatic suite of granites in its central domain during Late Cretaceous times. Here, we investigate the Guyong and Xiaolonghe plutons from this suite in terms of their petrological, geochemical, and Sr–Nd, zircon U–Pb and Lu–Hf–O isotopic features to gain insights into the evolution of the Neo-Tethys. The Guyong pluton (76 Ma) is composed of metaluminous monzogranites, and the Xiaolonghe pluton (76 Ma) is composed of metaluminous to peraluminous medium- and fine-grained syenogranite. A systematic decrease in Eu, Ba, Sr, P and Ti concentrations; a decrease in Zr/Hf and LREE/HREE ratios; and an increase in the Rb/Ba and Ta/Nb ratios from the Guyong to Xiaolonghe plutons suggest fractional crystallization of biotite, plagioclase, K-feldspar, apatite, ilmenite and titanite. They also show the characteristics of I-type granites. The negative zircon εHf(t) isotopic values (−10.04 to −5.22) and high δ18O values (6.69 to 8.58 ‰) and the negative whole-rock εNd(t) isotopic values (−9.7 to −10.1) and high initial 87Sr/86Sr ratios (0.7098–0.7099) of the Guyong monzogranite suggest that these rocks were generated by partial melting of the Precambrian basement without mantle input. The zircon εHf(t) isotopic values (−10.63 to −3.04) and δ18O values (6.54 to 8.69 ‰) of the Xiaolonghe syenogranite are similar to the features of the Guyong monzogranite, and this similarity suggests a cogenetic nature and magma derivation from the lower crust that is composed of both metasedimentary and meta-igneous rocks. The Xiaolonghe fine-grained syenogranite shows an obvious rare earth element tetrad effect and lower Nb/Ta ratios, which indicate its productive nature with respect to ore formation. In fact, we discuss that the Sn mineralization in the region was possible due to Sn being scavenged from these rocks by exsolved hydrothermal fluids. We correlate the Late Cretaceous magmatism in the central Tengchong Block with the northward subduction of the Neo-Tethys beneath the Burma–Tengchong Block.


2002 ◽  
Vol 42 (1) ◽  
pp. 311 ◽  
Author(s):  
R.M. Pollock ◽  
Q. Li ◽  
B. McGowran ◽  
S.C. Lang

The Gambier Sub-basin lies on the southern Australian passive continental margin that formed during continental breakup and seafloor spreading between the Australian and Antarctic plates. In addition to the numerous modern submarine canyons reported on the southern Australian margin, three palaeo-canyon systems have been identified within the Gambier Limestone of the South Australian Gambier Sub-basin. Favourable environmental conditions during the Oligocene and Early Miocene led to deposition of the Gambier Limestone, a widespread, prograding extra-tropical carbonate platform. A world-wide glacio-eustatic sea level fall in the Early Oligocene exposed the shelf in the Gambier Subbasin, causing widespread erosion and minor fluvial incision on the shelf and subsequent formation of nick points at the shelf edge. During the following marine transgression later in the Oligocene, the shelf was inundated and the nick points provided conduits for erosive turbidity currents to enlarge the canyons to the spectacular dimensions observed on seismic data. No less than 20 successive canyon cut and fill events ranging from Late Oligocene to Middle Miocene have been observed and mapped on seismic data across the shelf in the Gambier Sub-basin. The thick, dominantly fine-grained carbonate sheet logically represents a potential regional seal to underlying clastic reservoirs. However, the possibility exists for carbonate reservoir sands to be present within the palaeo-canyons, sealed by surrounding fine-grained carbonates. Although no hydrocarbons have yet been identified in the carbonates of the Gambier Sub-basin, the canyons provide an analogue useful for establishing the scale, internal architecture and geometry of canyon fill systems.


Sign in / Sign up

Export Citation Format

Share Document