Mapping subtle structures with light detection and ranging (LIDAR): flow units and phreatomagmatic rootless cones in the North Mountain Basalt, Nova Scotia

2006 ◽  
Vol 43 (2) ◽  
pp. 157-176 ◽  
Author(s):  
Tim L Webster ◽  
J Brendan Murphy ◽  
John C Gosse

Light detection and ranging (LIDAR) is an emerging technology to generate high-resolution digital elevation models (DEMs). Subtle topographical differences among three flow units of the Jurassic North Mountain Basalt, eastern Canada, are visible on a LIDAR-derived DEM. The boundaries were verified by field mapping and allow a simple projection of the contact planes through the terrain model to provide a three-dimensional visualization of the flow units. Several ring structures in the lower flow unit, distinguishable only in the LIDAR data, are interpreted to be the remnants of rootless phreatomagmatic cones. Glacial erosion has since excavated the highly fractured cone material, leaving the more resistant dike and quenched melt to form protruding ring structures. The ability to detect subtle variations in topography using LIDAR may identify previously undetected landscape elements.

Teknik ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 40
Author(s):  
Ayu Nur Safi'i ◽  
Prayudha Hartanto

Pembuatan Peta RBI skala 1:5.000 membutuhkan waktu yang lama, khususnya untuk pembuatan layer kontur. Layer kontur bisa didapatkan dari data hasil ekstraksi foto udara dan data Light Detection and Ranging (LIDAR). Sekarang ini, teknologi LiDAR lebih diandalkan untuk membuat Data Surface Model (DSM). Dari DSM dilakukan proses ekstrasi data untuk mendapatkan data Digital Terrain Model (DTM) atau Digital Elevation Model (DEM) yang prosesnya lebih cepat dan membutuhkan biaya yang relatif rendah. Metode filtering yang digunakan adalah metode Simple Morphological Filtering (SMRF) dengan memasukkan nilai parameter cell size, slope, windows, elevation threshold dan scalling factor. Hasil Cohen’s kappa rata-rata menunjukkan indikator DTM dalam kondisi baik, yang artinya dengan menggunakan metode SMRF, nilai kappa berada diantara 0,4-0,7. Smoothing filter dilakukan untuk menghilangkan sel kosong/ sel tanpa data. DTM yang dihasilkan dibandingkan dengan data validasi lapangan. Root Mean Square Error (RMSE) yang diperoleh berkisar antara 0,621-0,930 dan nilai Linear Error 90% (LE90) yang diperoleh berkisar antara 1,025-1,605. Hasil penelitian ini menunjukkan nilai RMSE dan LE90 tersebut memenuhi ketelitian vertikal peta skala 1: 5.000 dan masuk dalam kelas 2 dan 3 sesuai Peraturan BIG No.6 Tahun 2018 mengenai perubahan atas Perka BIG No.15 Tahun 2014 tentang Pedoman Teknis Ketelitian Peta Dasar


2009 ◽  
Vol 24 (2) ◽  
pp. 95-102 ◽  
Author(s):  
Hans-Erik Andersen

Abstract Airborne laser scanning (also known as light detection and ranging or LIDAR) data were used to estimate three fundamental forest stand condition classes (forest stand size, land cover type, and canopy closure) at 32 Forest Inventory Analysis (FIA) plots distributed over the Kenai Peninsula of Alaska. Individual tree crown segment attributes (height, area, and species type) were derived from the three-dimensional LIDAR point cloud, LIDAR-based canopy height models, and LIDAR return intensity information. The LIDAR-based crown segment and canopy cover information was then used to estimate condition classes at each 10-m grid cell on a 300 × 300-m area surrounding each FIA plot. A quantitative comparison of the LIDAR- and field-based condition classifications at the subplot centers indicates that LIDAR has potential as a useful sampling tool in an operational forest inventory program.


Author(s):  
Manjunath B. E ◽  
D. G. Anand ◽  
Mahant. G. Kattimani

Airborne Light Detection and Ranging (LiDAR) provides accurate height information for objects on the earth, which makes LiDAR become more and more popular in terrain and land surveying. In particular, LiDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. Aerial photos with LiDAR data were processed with genetic algorithms not only for feature extraction but also for orthographical image. DSM provided by LiDAR reduced the amount of GCPs needed for the regular processing, thus the reason both efficiency and accuracy are highly improved. LiDAR is an acronym for Light Detection and Ranging, which is typically defined as an integration of three technologies into a single system, which is capable of acquiring a data to produce accurate Digital Elevation Models.


Author(s):  
A. W. Lyda ◽  
X. Zhang ◽  
C. L. Glennie ◽  
K. Hudnut ◽  
B. A. Brooks

Remote sensing via LiDAR (Light Detection And Ranging) has proven extremely useful in both Earth science and hazard related studies. Surveys taken before and after an earthquake for example, can provide decimeter-level, 3D near-field estimates of land deformation that offer better spatial coverage of the near field rupture zone than other geodetic methods (e.g., InSAR, GNSS, or alignment array). In this study, we compare and contrast estimates of deformation obtained from different pre and post-event airborne laser scanning (ALS) data sets of the 2014 South Napa Earthquake using two change detection algorithms, Iterative Control Point (ICP) and Particle Image Velocimetry (PIV). The ICP algorithm is a closest point based registration algorithm that can iteratively acquire three dimensional deformations from airborne LiDAR data sets. By employing a newly proposed partition scheme, “moving window,” to handle the large spatial scale point cloud over the earthquake rupture area, the ICP process applies a rigid registration of data sets within an overlapped window to enhance the change detection results of the local, spatially varying surface deformation near-fault. The other algorithm, PIV, is a well-established, two dimensional image co-registration and correlation technique developed in fluid mechanics research and later applied to geotechnical studies. Adapted here for an earthquake with little vertical movement, the 3D point cloud is interpolated into a 2D DTM image and horizontal deformation is determined by assessing the cross-correlation of interrogation areas within the images to find the most likely deformation between two areas. Both the PIV process and the ICP algorithm are further benefited by a presented, novel use of urban geodetic markers. Analogous to the persistent scatterer technique employed with differential radar observations, this new LiDAR application exploits a classified point cloud dataset to assist the change detection algorithms. Ground deformation results and statistics from these techniques are presented and discussed here with supplementary analyses of the differences between techniques and the effects of temporal spacing between LiDAR datasets. Results show that both change detection methods provide consistent near field deformation comparable to field observed offsets. The deformation can vary in quality but estimated standard deviations are always below thirty one centimeters. This variation in quality differentiates the methods and proves that factors such as geodetic markers and temporal spacing play major roles in the outcomes of ALS change detection surveys.


2017 ◽  
Vol 14 (5) ◽  
pp. 172988141773540 ◽  
Author(s):  
Robert A Hewitt ◽  
Alex Ellery ◽  
Anton de Ruiter

A classifier training methodology is presented for Kapvik, a micro-rover prototype. A simulated light detection and ranging scan is divided into a grid, with each cell having a variety of characteristics (such as number of points, point variance and mean height) which act as inputs to classification algorithms. The training step avoids the need for time-consuming and error-prone manual classification through the use of a simulation that provides training inputs and target outputs. This simulation generates various terrains that could be encountered by a planetary rover, including untraversable ones, in a random fashion. A sensor model for a three-dimensional light detection and ranging is used with ray tracing to generate realistic noisy three-dimensional point clouds where all points that belong to untraversable terrain are labelled explicitly. A neural network classifier and its training algorithm are presented, and the results of its output as well as other popular classifiers show high accuracy on test data sets after training. The network is then tested on outdoor data to confirm it can accurately classify real-world light detection and ranging data. The results show the network is able to identify terrain correctly, falsely classifying just 4.74% of untraversable terrain.


2015 ◽  
Vol 54 (4) ◽  
pp. 044106
Author(s):  
Lingbing Bu ◽  
Zujing Qiu ◽  
Haiyang Gao ◽  
Aizhen Gao ◽  
Xingyou Huang

1993 ◽  
Vol 4 (4) ◽  
pp. 365-389 ◽  
Author(s):  
Shinji MASUMOTO ◽  
Venkatesh RAGHAVAN ◽  
Masanori SAKAMOTO ◽  
Kiyoji SHIONO

Sign in / Sign up

Export Citation Format

Share Document