Displacement and stress field along part of the Cobequid Fault, Nova Scotia

1969 ◽  
Vol 6 (5) ◽  
pp. 1095-1104 ◽  
Author(s):  
Gerhard H. Eisbacher

The east-trending Cobequid Fault separates pre-Carboniferous rocks of the Cobequid Mountains to the north from Carboniferous clastic rocks along the southern flank of the mountains. A detailed study of the fault zone revealed tie predominance of right-lateral displacements. The orientation of the stress field that existed during deformation along the fault trace was determined by the study of systematic fractures in pebbles within Carboniferous conglomerate. Maximum compressive stress was aligned in a NW–SE direction, being compatible with the orientation of the displacement vectors in the fault zone. Transcurrent movement along the Cobequid Fault occurred in late Pennsylvanian time and involved both Carboniferous and pre-Carboniferous rocks; total displacement is unknown.

Geosites ◽  
2019 ◽  
Vol 1 ◽  
pp. 1-6
Author(s):  
Robert Biek

The Sevier fault is spectacularly displayed on the north side of Utah Highway 12 at the entrance to Red Canyon, where it offsets a 500,000-year-old basaltic lava flow. The fault is one of several active, major faults that break apart the western margin of the Colorado Plateau in southwestern Utah. The Sevier fault is a “normal” fault, a type of fault that forms during extension of the earth’s crust, where one side of the fault moves down relative to the other side. In this case, the down-dropped side (the hanging wall) is west of the fault; the upthrown side (the footwall) lies to the east. The contrasting colors of rocks across the fault make the fault stand out in vivid detail. Immediately south of Red Canyon, the 5-million-year-old Rock Canyon lava flow, which erupted on the eastern slope of the Markagunt Plateau, flowed eastward and crossed the fault (which at the time juxtaposed non-resistant fan alluvium against coarse-grained volcaniclastic deposits) (Biek and others, 2015). The flow is now offset 775 to 1130 feet (235-345 m) along the main strand of the fault, yielding an anomalously low vertical slip rate of about 0.05 mm/yr (Lund and others, 2008). However, this eastern branch of the Sevier fault accounts for only part of the total displacement on the fault zone. A concealed, down-to-the-west fault is present west of coarse-grained volcaniclastic strata at the base of the Claron cliffs. Seismic reflection data indicate that the total displacement on the fault zone in this area is about 3000 feet (900 m) (Lundin, 1987, 1989; Davis, 1999).


1987 ◽  
Vol 124 (5) ◽  
pp. 441-450 ◽  
Author(s):  
N. J Soper ◽  
A. K. Higgins

AbstractIn northern Greenland in early Palaeozoic time a turbidite trough (the eastward extension of the Hazen trough of Arctic Canada) was flanked to the south by a carbonate platform. The trough was deformed during the mid-Palaeozoic Ellesmerian orogeny to form the E–W trending North Greenland fold belt. This fold belt was deformed further by Eurekan (Tertiary) structures, important among which is a major fault complex, the Harder Fjord fault zone (HFFZ). The suggestion has been made that this fault zone controlled early Cambrian sedimentation, even though the fault trace does not coincide with the trough–platform facies transition in sediments of that age; this has led to some controversy.We report new information from a mapping programme by the Geological Survey of Greenland which has established the thin-skinned nature of Ellesmerian deformation at the trough-platform transition and implies that much of the fold belt is underlain by a shallow detachment. This in turn implies that the HFFZ exists in the hanging-wall of the detachment while the early Cambrian trough-platform transition is located autochthonously in the foot-wall. We adduce evidence to show that the latter was probably controlled by syndepositional faulting with actively eroding fault scarps and suggest that these basement structures were reactivated in a dextral strike-slip mode in early Tertiary time to form the HFFZ as now observed.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 102
Author(s):  
Paraskevi Nomikou ◽  
Dimitris Evangelidis ◽  
Dimitrios Papanikolaou ◽  
Danai Lampridou ◽  
Dimitris Litsas ◽  
...  

On 30 October 2020, a strong earthquake of magnitude 7.0 occurred north of Samos Island at the Eastern Aegean Sea, whose earthquake mechanism corresponds to an E-W normal fault dipping to the north. During the aftershock period in December 2020, a hydrographic survey off the northern coastal margin of Samos Island was conducted onboard R/V NAFTILOS. The result was a detailed bathymetric map with 15 m grid interval and 50 m isobaths and a morphological slope map. The morphotectonic analysis showed the E-W fault zone running along the coastal zone with 30–50° of slope, forming a half-graben structure. Numerous landslides and canyons trending N-S, transversal to the main direction of the Samos coastline, are observed between 600 and 100 m water depth. The ENE-WSW oriented western Samos coastline forms the SE margin of the neighboring deeper Ikaria Basin. A hummocky relief was detected at the eastern margin of Samos Basin probably representing volcanic rocks. The active tectonics characterized by N-S extension is very different from the Neogene tectonics of Samos Island characterized by NE-SW compression. The mainshock and most of the aftershocks of the October 2020 seismic activity occur on the prolongation of the north dipping E-W fault zone at about 12 km depth.


2017 ◽  
Vol 122 (6) ◽  
pp. 4208-4236 ◽  
Author(s):  
Maor Kaduri ◽  
Jean-Pierre Gratier ◽  
François Renard ◽  
Ziyadin Çakir ◽  
Cécile Lasserre

1981 ◽  
Vol 18 (4) ◽  
pp. 776-788 ◽  
Author(s):  
R. D. Hyndman ◽  
R. M. Ellis

A temporary array of land and ocean bottom seismograph stations was used to accurately locate microearthquakes on the Queen Charlotte fault zone, which occurs along the continental margin of western Canada. The continental slope has two steep linear sections separated by a 25 km wide irregular terrace at a depth of 2 km. Eleven events were located with magnitudes from 0.5 to 2.0, 10 of them beneath the landward one of the two steep slopes, some 5 km off the coast of the southern Queen Charlotte Islands. No events were located beneath the seaward and deeper steep slope. The depths of seven of these events were constrained by the data to between 9 and 21 km with most near 20 km. The earthquake and other geophysical data are consistent with a near vertical fault zone having mainly strike-slip motion. A model including a small component of underthrusting in addition to strike-slip faulting is suggested to account for the some 15° difference between the relative motion of the North America and Pacific plates from plate tectonic models and the strike of the margin. One event was located about 50 km inland of the main active zone and probably occurred on the Sandspit fault. The rate of seismicity on the Queen Charlotte fault zone during the period of the survey was similar to that predicted by the recurrence relation for the region from the long-term earthquake record.


1987 ◽  
Vol 24 (6) ◽  
pp. 1086-1097 ◽  
Author(s):  
Mel R. Stauffer ◽  
Don J. Gendzwill

Fractures in Late Cretaceous to Late Pleistocene sediments in Saskatchewan, eastern Montana, and western North Dakota form two vertical, orthogonal sets trending northeast–southwest and northwest–southeast. The pattern is consistent, regardless of rock type or age (except for concretionary sandstone). Both sets appear to be extensional in origin and are similar in character to joints in Alberta. Modem stream valleys also trend in the same two dominant directions and may be controlled by the underlying fractures.Elevation variations on the sub-Mannville (Early Cretaceous) unconformity form a rectilinear pattern also parallel to the fracture sets, suggesting that fracturing was initiated at least as early as Late Jurassic. It may have begun earlier, but there are insufficient data at present to extend the time of initiation.We interpret the fractures as the result of vertical uplift together with plate motion: the westward drift of North America. The northeast–southwest-directed maximum principal horizontal stress of the midcontinent stress field is generated by viscous drag effects between the North American plate and the mantle. Vertical uplift, erosion, or both together produce a horizontal tensile state in near-surface materials, and with the addition of a directed horizontal stress through plate motion, vertical tension cracks are generated parallel to that horizontal stress (northeast–southwest). Nearly instantaneous elastic rebound results in the production of second-order joints (northwest–southeast) perpendicular to the first. In this manner, the body of rock is being subjected with time to complex alternation of northeast–southwest and northwest–southeast horizontal stresses, resulting in the continuous and contemporaneous production of two perpendicular extensional joint sets.


Sign in / Sign up

Export Citation Format

Share Document