Status of the Jurassic in the Canadian Cordillera of British Columbia, Alberta, and southern Yukon

1970 ◽  
Vol 7 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Hans Frebold ◽  
H. W. Tipper

Jurassic index fossils of the Canadian Cordillera indicate the presence of some zones of most Jurassic stages. In this report the more important localities are listed, the source of information, published and unpublished, is indicated, and an up-dated correlation chart is presented. The importance of tectonic events and their effect on the completeness of the Jurassic fossil record and on the Jurassic paleogeography are stressed.

1986 ◽  
Vol 64 (1) ◽  
pp. 84-87 ◽  
Author(s):  
Thomas P. Quinn ◽  
Graeme M. Tolson

To test the hypothesis that population-specific pheromones guide adult salmonids to their natal streams, juvenile and adult coho salmon (Oncorhynchus kisutch) were tested for chemosensory responses in two-choice tanks. Coho salmon from Quinsam and Big Qualicum rivers, British Columbia, Canada, distinguished their own population from the other. Tagging evidence indicates that straying between these two rivers and a third, geographically intermediate river seldom occurs. Thus, population-specific chemicals constitute a potential source of information for homing coho salmon, though their role vis-à-vis imprinted odors from other sources could not be evaluated.


Author(s):  
Andrew S. Cohen

The lacustrine fossil record comprises a mixture of endogenic fossils, such as cladocerans, derived from lakes, and exogenic fossils, such as insects or pollen, which are carried into lakes, by wind and water from surrounding areas. Our primary emphasis here will be on the endogenic fossil record of lakes; we will only briefly consider general aspects of the taphonomy and paleoecological significance of exogenic fossils for terrestrial plant and insect fossils. Information about lake fossils varies greatly between groups. Some taxa, such as diatoms, are virtual workhorses of the field, with numerous investigators, and established methods of sampling, analysis, and interpretation. At the other extreme are organisms such as copepods, which, despite their importance in lacustrine ecosystems, are so poorly fossilized that they are unlikely to ever play a major role in paleolimnology. In between these extremes lie the majority of lacustrine organisms. Many relatively common groups have great potential for paleoecological interpretation, but, for reasons of inadequate study, a lack of researchers, or difficulties in taxonomy, have thus far been little used by paleolimnologists. Major opportunities await new students in the field who are willing to take up the challenges of studying these clades. Despite their importance in lacustrine communities, cyanobacteria remain a relatively unexploited source of information for paleolimnology. Isolated cells have poor preservation potential, and fossil cyanobacterial cells are preserved in Late Quaternary lake muds primarily by their more resistant reproductive spores (akinetes), or occasionally by filaments. Planktonic cyanobacteria are only rarely recorded in older sediments. In contrast, benthic cyanobacterial communities are well represented in ancient lake beds by their constructional deposits, lithified algal mats, stromatolites, and thrombolites. Although their body fossils have been used only rarely to solve paleolimnological problems, planktonic cyanobacteria have great potential for this purpose, given their obvious importance in many lacustrine communities. Relatively resistant akinetes might be very useful for understanding changes in plankton communities, especially in cases where better- studied siliceous microfossils (diatoms and chrysophytes) are not well preserved, for example, in very alkaline lakes. However, almost nothing is known of the taphonomic biases that control the planktonic cyanobacterial fossil record.


2002 ◽  
Vol 8 ◽  
pp. 43-50 ◽  
Author(s):  
Karen Chin

The fossil record contains far more coprolites produced by carnivorous animals than by herbivores. This inequity reflects the fact that feces generated by diets of flesh and bone (and other skeletal materials) contain chemical constituents that may precipitate out under certain conditions as permineralizing phosphates. Thus, although coprolites are usually less common than fossil bones, they provide a significant source of information about ancient patterns of predation. The identity of a coprolite producer often remains unresolved, but fossil feces can provide new perspectives on prey selection patterns, digestive efficiency, and the occurrence of previously unknown taxa in a paleoecosystem. Dietary residues are often embedded in the interior of coprolites, but much can be learned from analyses of intact specimens. When ample material is available, however, destructive analyses such as petrography or coprolite dissolution may be used to extract additional paleobiological information.


2019 ◽  
Vol 56 (8) ◽  
pp. 803-813
Author(s):  
Gerald Mayr ◽  
S. Bruce Archibald ◽  
Gary W. Kaiser ◽  
Rolf W. Mathewes

We survey the known avian fossils from Ypresian (early Eocene) fossil sites of the North American Okanagan Highlands, mainly in British Columbia (Canada). All specimens represent taxa that were previously unknown from the Eocene of far-western North America. Wings from the McAbee site are tentatively referred to the Gaviiformes and would constitute the earliest fossil record of this group of birds. A postcranial skeleton from Driftwood Canyon is tentatively assigned to the Songziidae, a taxon originally established for fossils from the Ypresian of China. Two skeletons from Driftwood Canyon and the McAbee site are tentatively referred to Coliiformes and Zygodactylidae, respectively, whereas three further fossils from McAbee, Blakeburn, and Republic (Washington, USA) are too poorly preserved for even a tentative assignment. The specimens from the Okanagan Highlands inhabited relatively high paleoaltitudes with microthermal climates (except Quilchena: lower mesothermal) and mild winters, whereas most other Ypresian fossil birds are from much warmer lowland paleoenvironments with upper mesothermal to megathermal climates. The putative occurrence of a gaviiform bird is particularly noteworthy because diving birds are unknown from other lacustrine Ypresian fossil sites of the Northern Hemisphere. The bones of the putative zygodactylid show a sulphurous colouration, and we hypothesize that this highly unusual preservation may be due to the metabolic activity of sulphide-oxidizing bacteria.


1995 ◽  
Vol 32 (10) ◽  
pp. 1514-1519 ◽  
Author(s):  
John F. Cassidy

Receiver function analysis has proven to be a powerful, yet inexpensive tool for estimating the S-wave velocity structure of the crust and upper mantle beneath three-component seismograph stations in the southern Canadian Cordillera. Receiver function studies using a portable broadband seismograph array across southwestern British Columbia provided site-specific estimates for the location of the subducting Juan de Fuca plate. The oceanic crust was imaged at 47−53 km beneath central Vancouver Island, and 60–65 km beneath the Strait of Georgia. Further, these studies revealed a prominent low-velocity zone (VS = −1.0 km/s) that coincides with the E reflectors imaged ~5–10 km above the subducting plate on Lithoprobe reflection lines. The E low-velocity zone was shown to extend into the upper mantle beneath the Strait of Georgia and the British Columbia mainland, to depths of 50–60 km. Combining the receiver function and refraction models revealed a high Poisson's ratio (0.27–0.38) for this feature. The continental Moho was estimated at 36 km beneath the Strait of Georgia, and a crustal low-velocity zone associated with the Lithoprobe C reflectors beneath Vancouver Island was interpreted to extend eastward, near the base of the continental crust, to the British Columbia mainland. Analysis of data from the recently deployed Canadian National Seismograph Network demonstrates the variations in crustal thickness and complexity across the southern Canadian Cordillera, with the Moho depth varying from 35 km in the Coast Mountains, to 33 km near Penticton, to 50 km near the Rocky Mountain deformation front.


2009 ◽  
Vol 5 (4) ◽  
pp. 521-523 ◽  
Author(s):  
Peter R. Teske ◽  
Luciano B. Beheregaray

Seahorses (Syngnathidae: Hippocampus ) are iconic marine teleosts that are readily identifiable by their upright posture. The fossil record is inadequate to shed light on the evolution of this trait because it lacks transitional forms. There are, however, extant syngnathid species (the pygmy pipehorses) that look like horizontally swimming seahorses and that might represent a surviving evolutionary link between the benthic seahorses and other, free-swimming members of the family Syngnathidae. Using sequence data from five nuclear loci, we confirm the sister taxon relationship between seahorses and pygmy pipehorses. Molecular dating indicates that the two taxa diverged during the Late Oligocene. During this time, tectonic events in the Indo-West Pacific resulted in the formation of vast amounts of new shallow-water areas and associated expansion of seagrass habitats that would have favoured the seahorses’ upright posture by improving their camouflage while not affecting their manoeuvrability negatively. The molecular techniques employed here provide new insights into the evolution of a taxon whose fossil record is incomplete, but whose evolutionary history is so recent that the major stages of morphological evolution are still represented in extant species.


1971 ◽  
Vol 8 (7) ◽  
pp. 788-801 ◽  
Author(s):  
M. J. Berry ◽  
W. R. Jacoby ◽  
E. R. Niblett ◽  
R. A. Stacey

Geophysical studies of the crust and upper mantle have been conducted in the Canadian Cordillera for over two decades, but only recently have sufficient data been collected to permit a synthesis and a correlation with the major geological units. The studies have included gravity, heat flow, and magnetotelluric observations, geomagnetic depth sounding, and high level aeromagnetics as well as both small and large scale refraction and reflection seismic surveys.It now appears that major crustal units may be recognized geophysically:(i) Seismic and gravity data suggest that the Plains and Rocky Mountains are underlain by two units of the North American craton with a crustal section 45–50 km thick. The northern unit appears to terminate at the Rocky Mountain Trench while the southern unit may extend to the Omineca Geanticline.(ii) The combined geological and geophysical data suggest that the Rocky Mountain Trench and possibly the Kootenay Arc near the 49th parallel mark the edge of the Precambrian continental margin and that the western Cordillera was formed by a complex succession of plate interactions with repeated reactivation of block boundaries.(iii) A combination of magnetic and heat flow data suggest that the region between the Rocky Mountain Trench and the Fraser Lineament is part of the Cordilleran Thermal Anomaly Zone recognized by Blackwell in the United States.(iv) Seismic data in Central British Columbia suggest that the Pinchi Fault system is a boundary between two crustal blocks.(v) The crustal thickness of the Coast Geanticline appears to increase gradually to the west to approximately 40 km and, at least in southern British Columbia, does not have a root zone below the mountains.(vi) The crustal section beneath Vancouver Island is abnormally thick and there is some paleomagnetic data which suggest that the Island may not have been formed in its present position, contiguous to the Cordillera. The crustal section for the northern part of the Insular Trough is significantly thinner.(vii) The active spreading of the Juan de Fuca Rise – Explorer Trench is now well documented. The geophysical data suggest active subduction of the Juan de Fuca plate beneath Oregon, Washing-ton, and southern Vancouver Island. However, further north there is no evidence for subduction.


2000 ◽  
Vol 132 (5) ◽  
pp. 691-693 ◽  
Author(s):  
David Grimaldi ◽  
Donat Agosti

The recent paper by Poinar et al. (1999), entitled “New amber deposit provides evidence of early paleogene extinctions, paleoclimates, and past distributions,” reports a new deposit of fossiliferous amber from the Eocene of British Columbia. This report of a significant discovery by one of the co-authors (Bruce Archibald) is compromised by unexplained statements that ants in this amber are the “earliest unequivocal ants.” They cited unpublished cladograms by Cesare Baroni Urbani as the source of information that showed that previous reports of ants in Cretaceous amber were not really ants.


1997 ◽  
Vol 34 (10) ◽  
pp. 1379-1391 ◽  
Author(s):  
M. J. Harris ◽  
D. T. A. Symons ◽  
W. H. Blackburn ◽  
C. J. R. Hart

This is the first of several Lithoprobe paleomagnetic studies underway to examine geotectonic motions in the northern Canadian Cordillera. Except for one controversial study, estimates for terranes underlying the Intermontane Belt in the Yukon have been extrapolated from studies in Alaska, southern British Columbia, and the northwestern United States. The Whitehorse Pluton is a large unmetamorphosed and undeformed tonalitic body of mid-Cretaceous age (~112 Ma) that was intruded into sedimentary units of the Whitehorse Trough in the Stikinia terrane. Geothermobarometric estimates for eight sites around the pluton indicate that postmagnetization tilting has been negligible since cooling through the hornblende-crystallization temperature and that the pluton is a high-level intrusion. Paleomagnetic measurements for 22 of 24 sites in the pluton yield a well-defined characteristic remanent magnetization (ChRM) direction that is steeply down and northwards. The ChRM direction gives a paleopole of 285.5°E, 81.7°N (dp = 53°, dm = 5.7°). When compared with the 112 Ma reference pole for the North American craton, this paleopole suggests that the northern Stikinia terrane has been translated northwards by 11.0 ± 4.8° (1220 ± 530 km) and rotated clockwise by 59 ± 17°. Except for an estimate from the ~70 Ma Carmacks Group volcanics, this translation and rotation estimate agrees well with previous estimates for units in the central and southern Intermontane Belt. They suggest that the terranes of the Intermontane Belt have behaved as a fairly coherent unit since the Early Cretaceous, moving northward at a minimum average rate of 2.3 ± 0.4 cm/a between ~140 and ~45 Ma.


Sign in / Sign up

Export Citation Format

Share Document