Age and Geochemical Studies of the Snyder Breccia, Coastal Labrador

1975 ◽  
Vol 12 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Jackson M. Barton Jr. ◽  
Erika S. Barton

The Snyder breccia is composed of angular to subrounded xenoliths of migmatites and amphibolites in a very fine grained matrix. It is apparently intrusive into the metasediments of the Snyder Group exposed at Snyder Bay, Labrador. The Snyder Group unconformably overlies a migmatitic and amphibolitic basement complex and is intruded by the Kiglapait layered intrusion. K–Ar ages indicate that the basement complex is Archean in age (> 2600 m.y. old) and that the Kiglapait layered intrusion was emplaced prior to 1280 m.y. ago. Major and trace element analyses of the matrix of the Snyder breccia indicate that while it was originally of tonalitic composition, later it locally underwent alteration characterized by loss of sodium and strontium and gain of potassium, rubidium and barium. Rb–Sr isotopic analyses show that this alteration occurred about 1842 m.y. ago, most probably contemporaneously with emplacement of the breccia. The Snyder Group thus was deposited sometime between 2600 and 1842 m.y. ago and may be correlative with other Aphebian successions preserved on the North Atlantic Archean craton.

F, Cl and Br contents of tholeiitic volcanic glasses dredged along the Mid-Atlantic Ridge from 53° to 28° N, including the transect over the Azores Plateau, are reported. The halogen variations parallel those of 87 Sr/ 86 Sr, La/Sm or other incompatible elements of varying volatility. The latitudinal halogen variation pattern is not obliterated if only Mg-rich lavas are considered. Variations in extent of low-pressure fractional crystallization or partial melting conditions do not appear to be the primary cause of the halogen variations. Instead, mantle-derived heterogeneities in halogens, with major enrichments in the mantle beneath the Azores, are suggested. The Azores platform is not only a ‘hotspot’ but also a ‘wetspot’, which may explain the unusually intense Azores volcanic activity. The magnitude of the halogen and incompatible element enrichments beneath the Azores appear strongly dependent on the size of these anions and cations, but independent of relative volatility at low pressure. The large anions Cl and Br behave similarly to large cations Rb, Cs and Ba, and the smaller anion F similarly to Sr and P. Processes involving crystal and liquid (fluid and/or melt), CO 2 rather than H 2 O dominated, seem to have produced these largescale mantle heterogeneities. Geochemical ‘anomalies’ beneath the Azores are no longer apparent for coherent element pair ratios of similar ionic size. Values of such ‘unfractionated’ coherent trace element ratios provide an indication of the mantle composition and its nature before fractionation event (s) which produced the inferred isotopic and trace element heterogeneities apparently present beneath the North Atlantic. The relative trace element composition of this precursor mantle does not resemble that of carbonaceous chondrites except for refractory trace element pairs of similar ionic size. It is strongly depleted in halogens, and to a lesser extent in large alkali ions Rb and Cs relative to refractory Ba. These relative depletions are comparable within a factor of 5 to Ganapathy & Anders’s estimates for the bulk Earth, with the exception of Cs. There is also evidence for removal of phosphorus into the iron core during its formation. With the exception of San Miguel, alkali basalts from the Azores Islands appear to have been derived from the same mantle source as tholeiitic basalts from the ridge transect over the Azores Platform but by half as much degree of partial melting. The Azores subaerial basalts seem to have been partly degassed in Cl, Br and F, in decreasing order of intensity. A working model involving metasomatism from release of fluids at phase transformation during convective mantle overturns is proposed to explain the formation of mantle plumes or diapirs enriched in larger relative to smaller halogen and other incompatible trace elements. The model is ad hoc and needs testing. However, any other dynamical model accounting for the 400 -1000 km long gradients in incompatible trace elements, halogens and radiogenic isotopes along the Mid-Atlantic Ridge should, at some stage, require either (1) some variable extent of mixing or (2) differential migration of liquid relative to crystals followed by re-equilibration (or both), as a diffusion controlled mechanism over such large distances is clearly ruled out, given the age of the Earth.


2020 ◽  
Vol 4 (11) ◽  
pp. 2185-2204
Author(s):  
Nolwenn Lemaitre ◽  
Hélène Planquette ◽  
Frank Dehairs ◽  
Frédéric Planchon ◽  
Géraldine Sarthou ◽  
...  

2015 ◽  
Vol 127 ◽  
pp. 186-198 ◽  
Author(s):  
Mellissa Cross ◽  
David McGee ◽  
Wallace S. Broecker ◽  
Jay Quade ◽  
Jeremy D. Shakun ◽  
...  

2015 ◽  
Vol 79 (4) ◽  
pp. 877-907 ◽  
Author(s):  
Hannah S. R. Hughes ◽  
Iain McDonald ◽  
John W. Faithfull ◽  
Brian G. J. Upton ◽  
Hilary Downes

AbstractBulk rock geochemistry and major- and trace-element compositions of clinopyroxene have been determined for three suites of peridotitic mantle xenoliths from the North Atlantic Craton (NAC) in northern Scotland, to establish the magmatic and metasomatic history of subcontinental lithospheric mantle (SCLM) below this region. Spinel lherzolites from the southernmost locality (Streap Com'laidh) have non-NAC mantle compositions, while the two northern xenolith suites (Loch Roag and Rinibar) are derived from the thinned NAC marginal keel. Clinopyroxene compositions have characteristic trace-element signatures which show both 'primary' and 'metasomatic' origins. We use Zr and Hf abundances to identify ancient cryptic refertilization in 'primary' clinopyroxenes. We suggest that Loch Roag and Rinibar peridotite xenoliths represent an ancient Archaean-Palaeoproterozoic SCLM with original depleted cratonic signatures which were overprinted by metasomatism around the time of intrusion of the Scourie Dyke Swarm (∼2.4 Ga). This SCLM keel was preserved during Caledonian orogenesis, although some addition of material and/or metasomatism probably also occurred, as recorded by Rinibar xenoliths. Rinibar and Streap xenoliths were entrained in Permo-Carboniferous magmas and thus were isolated from the SCLM ∼200 Ma before Loch Roag xenoliths (in an Eocene dyke). Crucially, despite their geographical location, lithospheric mantle peridotite samples from Loch Roag show no evidence of recent melting or refertilization during the Palaeogene opening of the Atlantic.


2020 ◽  
Author(s):  
Eric Brown ◽  
Charles Lesher

<p>Basalts are generated by adiabatic decompression melting of the upper mantle, and thus provide spatial and temporal records of the thermal, compositional, and dynamical conditions of their source regions. Uniquely constraining these factors through the lens of melting is challenging given the complexity of the melting process. To limit the <em>a priori</em> assumptions typically required for forward modeling of mantle melting, and to assess the robustness of the modeling results, we combine a Markov chain Monte Carlo sampling method with the forward melting model REEBOX PRO [1] simulating adiabatic decompression melting of lithologically heterogeneous mantle. Using this method, we invert for mantle potential temperature (Tp), lithologic trace element and isotopic composition and abundance, and melt productivity together with a robust evaluation of the uncertainty in these system properties. We have applied this new methodology to constrain melting beneath the Reykjanes Peninsula (RP) of Iceland [2] and here extend the approach to Iceland’s Northern Volcanic Zone (NVZ). We consider melting of a heterogeneous mantle source involving depleted peridotite and pyroxenite lithologies, e.g., KG1, MIX1G and G2 pyroxenites. Best-fit model sources for Iceland basalts contain more than 90% depleted peridotite and less than 10% pyroxenite with Tp ~125-200 °C above ambient mantle. The trace element and Pb and Nd isotope composition of the depleted source beneath the Reykjanes Peninsula is similar to DMM [3], whereas depleted mantle for the NVZ is isotopically distinct and more trace element enriched. Conversely, inverted pyroxenite trace element compositions are similar for RP and NVZ and are more enriched than previously inferred, despite marked differences in their Pb and Nd isotope composition. We use these new constraints on the Iceland source to investigate their relative importance in basalt genesis along the adjoining Reykjanes and Kolbeinsey Ridges. We find that the proportion of pyroxenite diminishes southward along Reykjanes Ridge and is seemingly absent to the north along the Kolbeinsey Ridge. Moreover, abundances of inverted RP and NVZ depleted mantle also diminish away from Iceland and give way to a common depleted source for the North Atlantic. These findings further illuminate the along-strike variability in source composition along the North Atlantic ridge system influenced by the Iceland melting anomaly, while reconciling geochemical, geophysical and petrologic constraints required to rigorously test plume vs. non-plume models.</p><p>[1] Brown & Lesher (2016); G^3, v. 17, p. 3929-2968</p><p><span>[2] Brown et al. (2020); EPSL, v. 532, 116007</span></p><p>[3] Workman and Hart (2005); EPSL, v.231, p. 53-72</p>


2014 ◽  
Vol 185 (6) ◽  
pp. 413-435 ◽  
Author(s):  
Laurence Le Callonnec ◽  
Maurice Renard ◽  
Marc De Rafélis ◽  
Fabrice Minoletti ◽  
Catherine Beltran ◽  
...  

AbstractWell exposed and stratigraphically well constrained by numerous studies, the Zumaia section is one of the best places to conduct studies on the Palaeocene in basin facies. Thus, this section has been chosen [Schmitz et al., 2011] as a stratotype of Selandian basal and terminal limits (GSSP: Global boundary Stratotype Section and Point). The sediments consist of carbonate hemipelagites interbedded with fine carbonate (Maastrichtian to Selandian) and siliciclastic (Thanetian to Eocene) turbidites.The purpose of this work is to geochemically characterize the Selandian by trace element contents (strontium and manganese) and to try to assess the chemical composition of seawater during the Paleocene. Analysis of various separated granulometric fine fractions show that hemipelagic sediments from the Zumaia section present a high preservation quality of the original records of trace-element contents. Late burial diagenesis plays only a minor role and geochemical breaks are not reducible to a change in the nature of carbonate producers.The strontium contents of Paleocene sediments require that the Sr/Ca ratio of seawater was lower than that in the present ocean. The Selandian is characterized by a positive excursion of the strontium curve. This accident is also recognized in several worldwide sections and is related to the platform/basin carbonate sedimentation budget and the intensity of oceanic hydrothermalism.The Mn content of hemipelagites is very high and can reach 2500–3000 ppm in the Paleocene. A comparison of analyses by atomic absorption spectrometry (AAS) and electron paramagnetic resonance (EPR) shows that both Mn2+ (in the calcite lattice) and Mn4+ (as oxide micro nodules) coexist. The Mn content fluctuations are related to the opening phases of the North Atlantic during the Paleocene by submarine volcanism and hydrothermalism in the North Atlantic Igneous Province (NAIP).


2009 ◽  
Vol 146 (3) ◽  
pp. 382-399 ◽  
Author(s):  
ROMAIN MEYER ◽  
GRAEME R. NICOLL ◽  
JAN HERTOGEN ◽  
VALENTIN R. TROLL ◽  
ROBERT M. ELLAM ◽  
...  

AbstractSr and Nd isotope ratios, together with lithophile trace elements, have been measured in a representative set of igneous rocks and Lewisian gneisses from the Isle of Rum in order to unravel the petrogenesis of the felsic rocks that erupted in the early stages of Palaeogene magmatism in the North Atlantic Igneous Province (NAIP). The Rum rhyodacites appear to be the products of large amounts of melting of Lewisian amphibolite gneiss. The Sr and Nd isotopic composition of the magmas can be explained without invoking an additional granulitic crustal component. Concentrations of the trace element Cs in the rhyodacites strongly suggests that the gneiss parent rock had experienced Cs and Rb loss prior to Palaeogene times, possibly during a Caledonian event. This depletion caused heterogeneity with respect to87Sr/86Sr in the crustal source of silicic melts. Other igneous rock types on Rum (dacites, early gabbros) are mixtures of crustal melts and and primary mantle melts. Forward Rare Earth Element modelling shows that late stage picritic melts on Rum are close analogues for the parent melts of the Rum Layered Suite, and for the mantle melts that caused crustal anatexis of the Lewisian gneiss. These primary mantle melts have close affinities to Mid-Oceanic Ridge Basalts (MORB), whose trace element content varies from slightly depleted to slightly enriched. Crustal anatexis is a common process in the rift-to-drift evolution during continental break-up and the formation of Volcanic Rifted Margins systems. The ‘early felsic–later mafic’ volcanic rock associations from Rum are compared to similar associations recovered from the now-drowned seaward-dipping wedges on the shelf of SE Greenland and on the Vøring Plateau (Norwegian Sea). These three regions show geochemical differences that result from variations in the regional crustal composition and the depth at which crustal anatexis took place.


1969 ◽  
Vol 20 ◽  
pp. 67-70 ◽  
Author(s):  
Nynke Keulen ◽  
Tomas Næraa ◽  
Thomas F. Kokfelt ◽  
John C. Schumacher ◽  
Anders Scherstén

The Fiskenæsset complex in southern West Greenland is part of the North Atlantic craton and is a layered intrusion consisting of gabbro, ultramafic and anorthositic rocks that was deformed during multiple episodes of folding and metamorphism (Myers 1985). We collected late-stage magmatic hornblenditic dykes and adjacent anorthosites and studied these samples integratively with several in situ techniques to determine the igneous and metamorphic history of the Fiskenæsset complex. The work presented here is part of an ongoing joint project between the Greenland Bureau of Minerals and Petroleum and the Geological Survey of Denmark and Greenland (GEUS). Here we report on new radiometric ages and mineral chemistry data from anorthosites from the North Atlantic craton in southern West Greenland (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document