Late Quaternary Sediments and Geomorphic History of the Southern Rocky Mountain Trench, British Columbia

1975 ◽  
Vol 12 (4) ◽  
pp. 595-605 ◽  
Author(s):  
John J. Clague

The southern Rocky Mountain Trench was a major outlet valley of the Cordilleran Ice Sheet. Quaternary sediments underlying the floor of the trench in southeastern British Columbia consist mainly of glacial, glaciofluvial, and glaciolacustrine materials deposited during the Fraser (Pinedale) Glaciation, and fluvial and lacustrine sediments deposited during the preceding interglaciation.Deposits of three stades and two intervening nonglacial intervals are recognized. Interglacial sediments which contain wood dated at 26 800 ± 1000 y B.P. underlie drift of the early stade. During the interval between the early and middle stades, the Rocky Mountain Trench in southeastern British Columbia probably was completely deglaciated, and sediments were deposited in one or more lakes on the floor of the trench. In contrast, glacier recession between the middle and late stades was of short duration and extent; glaciolacustrine sediments were deposited only along the margins of the Rocky Mountain Trench, and apparently residual ice remained in the center of the valley. Final recession of the trunk glacier occurred prior to 10 000 y B.P. with no major halts and without significant stagnation of the terminus.

1987 ◽  
Vol 24 (1) ◽  
pp. 147-158 ◽  
Author(s):  
John J. Clague

Thick valley-fill sediments in the vicinity of Williams Lake, British Columbia, provide a detailed record of the late Quaternary history of an area near the centre of the former Cordilleran Ice Sheet. Stratigraphic units assigned to the late Wisconsinan Fraser Glaciation, the preceding (penultimate) glaciation, and the present interglaciation are described. Especially noteworthy are (1) thick units of sand and gravel deposited by braided streams, perhaps during periods of ice-sheet growth; and (2) complex glaciolacustrine sediments that accumulated in ice-dammed lakes during periods of deglaciation.Glaciers from the Coast and Cariboo mountains coalesced and flowed north over central British Columbia during late Wisconsinan time. Fraser Glaciation advance sediments and older Pleistocene deposits were partially removed by this ice sheet, and the eroded remnants were mantled with till. At the end of the Fraser Glaciation, the Cordilleran Ice Sheet downwasted and retreated southward along an irregular front across the study area. Parts of the ice sheet stagnated and disintegrated into tongues confined to valleys. Sediment carried by melt streams flowing from decaying ice masses was deposited in glacial lakes, in stream channels, and on floodplains.


1981 ◽  
Vol 18 (1) ◽  
pp. 1-12 ◽  
Author(s):  
D. E. Howes

Materials from two glacial and two nonglacial intervals are identified on north-central Vancouver Island, British Columbia. The oldest Pleistocene unit, Muchalat River drift, consists of till and overlying glaciolacustrine silt. It has been tentatively correlated with Dashwood drift of the Semiahmoo Glaciation. An overlying single exposure of mudflow sediment in the Gold River valley contains wood dated at 40 900 ± 2000 years BP within the time span of the Olympia nonglacial interval. The Olympia nonglacial interval was characterized by a period of degradation in which Olympia-age sediments were deposited in transient sedimentary environments and subsequently eroded. Gold River drift includes Gold River advance deposits, Gold River till, and Gold River late glacial deposits, and was deposited during the Fraser Glaciation. The Fraser Glaciation was well underway on north-central Vancouver Island by 25 200 ± 330 years BP. During the Fraser Glaciation maximum, which occurred after 20 600 ± 330 years BP, Coast Mountain ice flowed in a southwesterly direction across north-central Vancouver Island overtopping all but the highest peaks of the Vancouver Island Mountains. Deglaciation commenced prior to 12 930 ± 160 years BP and the ice had probably disappeared before 9500 years ago. During postglacial times rivers have dissected older Quaternary sediments and bedrock up to at least 40 m. Macroflora data recorded in postglacial lacustrine sediments suggest that the Hypsithermal Interval commenced before 8300 ± 70 years BP.


2001 ◽  
Vol 38 (4) ◽  
pp. 719-731 ◽  
Author(s):  
A Plouffe ◽  
V M Levson

The Quaternary stratigraphy of the Nechako River – Cheslatta Lake area of central British Columbia is described and interpreted to reconstruct the late Quaternary history of the region. Exposures of glacial and nonglacial sediments deposited prior to the last glaciation (Fraser) are limited to three sites. Pollen assemblages from pre-Fraser nonglacial sediments at two of these sites reveal forested conditions around 39 000 BP. During the advance phase of the Fraser Glaciation, glacial lakes were ponded when trunk glaciers blocked some tributary valleys. Early in the glaciation, the drainage was free in easterly draining valleys. Subsequently, the easterly drainage was blocked either locally by sediments and ice or as a result of impoundment of the Fraser River and its tributaries east of the study area. Ice generally moved east and northeast from accumulation zones in the Coast Mountains. Ice flow was influenced by topography. Major late-glacial lakes developed in the Nechako River valley and the Knewstubb Lake region because potential drainage routes were blocked by ice.


2007 ◽  
Vol 44 (4) ◽  
pp. 445-457 ◽  
Author(s):  
Jan M Bednarski ◽  
I Rod Smith

Mapping the surficial geology of the Trutch map area (NTS 94G) provides new data on the timing of continental and montane glaciations along the Foothills of northeastern British Columbia. Striated surfaces on mountain crests were dated to the Late Wisconsinan substage by cosmogenic dating. The striations were produced by eastward-flowing ice emanating from the region of the Continental Divide. This ice was thick enough to cross the main ranges and overtop the Rocky Mountain Foothill summits at 2000 m above sea level (asl). It is argued here that such a flow, unhindered by topography, could only have been produced by the Cordilleran Ice Sheet and not by local cirque glaciation. During this time, the Cordilleran Ice Sheet dispersed limestone and schist erratics of western provenance onto the plains beyond the mountain front. Conversely, the Laurentide Ice Sheet did not reach its western limit in the Foothills until after Cordilleran ice retreated from the area. During its maximum, the Laurentide ice penetrated the mountain valleys up to 17 km west of the mountain front, and deposited crystalline erratics from the Canadian Shield as high as 1588 m asl along the Foothills. In some valleys a smaller montane advance followed the retreat of the Laurentide Ice Sheet.


1987 ◽  
Vol 24 (4) ◽  
pp. 741-751 ◽  
Author(s):  
H. George ◽  
W. A. Gorman ◽  
D. F. VanDine

Glacial stratigraphy and geomorphology of the bottom areas of the Elk Valley support the existence of one major ice advance, presumably during the late Wisconsinan. Its retreat probably occurred in two stages by orderly frontal withdrawal. Glacial Lake Elk, formed within the Elk Valley from meltwaters released by this glacier, was dammed initially by an ice plug from the Rocky Mountain Trench glacier at a point near Morrissey and subsequently less than 3 km upvalley from Elko. The lake drained in at least three stages.


2016 ◽  
Vol 85 (3) ◽  
pp. 409-429 ◽  
Author(s):  
Adrian Scott Hickin ◽  
Olav B. Lian ◽  
Victor M. Levson

Geomorphic, stratigraphic and geochronological evidence from northeast British Columbia (Canada) indicates that, during the late Wisconsinan (approximately equivalent to marine oxygen isotope stage [MIS] 2), a major lobe of western-sourced ice coalesced with the northeastern-sourced Laurentide Ice Sheet (LIS). High-resolution digital elevation models reveal a continuous 75 km-long field of streamlined landforms that indicate the ice flow direction of a major northeast-flowing lobe of the Cordilleran Ice Sheet (CIS) or a montane glacier (>200 km wide) was deflected to a north-northwest trajectory as it coalesced with the retreating LIS. The streamlined landforms are composed of till containing clasts of eastern provenance that imply that the LIS reached its maximum extent before the western-sourced ice flow crossed the area. Since the LIS only reached this region in the late Wisconsinan, the CIS/montane ice responsible for the streamlined landforms must have occupied the area after the LIS withdrew. Stratigraphy from the Murray and Pine river valleys supports a late Wisconsinan age for the surface landforms and records two glacial events separated by a non-glacial interval that was dated to be of middle Wisconsinan (MIS 3) age.


1974 ◽  
Vol 11 (7) ◽  
pp. 916-938 ◽  
Author(s):  
John J. Clague

The Tertiary history of the southern Rocky Mountain Trench is inferred from a study of the distribution, stratigraphy, fabric, lithologic composition, structure, and palynology of the Miocene St. Eugene Formation in southeastern British Columbia.The St. Eugene Formation consists of flood-plain and fan facies and represents the upper part of up to about 1500 m of sediments which accumulated in the proto-Rocky Mountain Trench upon cessation of Laramide deformation and after initiation of extension and block faulting in the eastern Cordillera during Eocene or early Oligocene time. Deep Tertiary basins in the southern Rocky Mountain Trench are bounded on the east and west by high-angle faults parallel to the Trench margins and on the north and south by faults transverse to the trend of the Trench. Block faulting of a half-graben style was probably contemporaneous with sediment deposition, but at least 600 m of displacement on the east boundary fault postdates deposition of the St. Eugene Formation. Although there is no present seismic activity along the Rocky Mountain Trench north of latitude 49°N, Holocene fault scarps and earthquakes in a zone along the Rocky Mountains of the United States attest to the continuation of block faulting south of 49°N.The St. Eugene microflora includes at least 39 genera of ferns, gymnosperms, and anthophytes. Phytogeographic reconstruction based upon the habitats of extant counter-parts indicates floral elements growing on poorly drained lowlands, adjacent slopes, and montane uplands; thus, there was moderate to high relief in southeastern British Columbia during St. Eugene time. The climate apparently was temperate, with warm summers, mild winters, and abundant, uniformly distributed precipitation. This contrasts with the present climate of the southern Rocky Mountain Trench which is semiarid with hot summers and cold winters, and suggests that the mountain barriers which presently restrict cool, moist, Pacific maritime air masses to the coast were lower during the Miocene, or that the polar seas were relatively warm.


2007 ◽  
Vol 46 (3) ◽  
pp. 311-329 ◽  
Author(s):  
Brian MacLean ◽  
Gustav Vilks ◽  
Bhan Deonarine

ABSTRACT Regional ship-borne investigations of seafloor sediments provide further information on late Quaternary depositional environments and history in the Hudson Strait-Ungava Bay region. Greatest sediment thicknesses, up to 130 m, occur in the large basin in eastern Hudson Strait and in the western Hudson Strait basin north of Charles Island. Significant deposits are also present in basins southwest of Charles Island, along the south central part of the Strait, and in the southern part of Ungava Bay. Glacial drift deposits are widespread, but glaciomarine and postglacial sediments mainly occur in the basinal areas, with glaciomarine sediments generally predominating. Glaciomarine sediments are laterally transitional to glacial drift in the south central part of the Strait, and at many other basin margins. AMS dating of the deepest shells found within three cores from the glaciomarine sequences in the Wakeham Bay-Baie Héricart region of south central Hudson Strait yielded ages of 8390 ± 70,8420 ± 80, and 8520 ± 80 BP. Sequences underlying the dated intervals may contain time equivalents of glaciomarine sediments 1000-2000 years older found onshore in the Deception Bay area by Gray, Bruneau, and others.


Sign in / Sign up

Export Citation Format

Share Document