Revised stratigraphy of the Long Reach area, southern New Brunswick: evidence for major, northwestward-directed Acadian thrusting

1981 ◽  
Vol 18 (3) ◽  
pp. 646-656 ◽  
Author(s):  
S. R. McCutcheon

In the Long Reach area of southern New Brunswick, a new stratigraphic succession has been delineated; it consists of Precambrian (?) volcanic rocks, Cambrian sedimentary, volcanic and hypabyssal rocks, Silurian sedimentary rocks, and Devonian plus Precambrian (?) heterogeneous, granitoid rocks. The northern boundary of this succession is postulated to be a northwestward-directed thrust fault of Acadian age. Other Acadian thrust faults are interpreted in the area and major reverse movement of the same age occurred along the Belleisle Fault.Mafic and felsic volcanic rocks that were previously thought to be either Precambrian or Silurian are demonstrably part of the Lower Cambrian section. Some of the granitoid rocks intrude Silurian strata and therefore cannot be basement to the Cambrian succession. Other granitoid rocks appear to be older and may be Precambrian in age.

2010 ◽  
Vol 47 (12) ◽  
pp. 1481-1506 ◽  
Author(s):  
Vicki McNicoll ◽  
Gerry Squires ◽  
Andrew Kerr ◽  
Paul Moore

The Duck Pond Cu–Zn–Pb–Ag–Au deposit in Newfoundland is hosted by volcanic rocks of the Cambrian Tally Pond group in the Victoria Lake supergroup. In conjunction with the nearby Boundary deposit, it contains 4.1 million tonnes of ore at 3.3% Cu, 5.7% Zn, 0.9% Pb, 59 g/t Ag, and 0.9 g/t Au. The deposits are hosted by altered felsic flows, tuffs, and volcaniclastic sedimentary rocks, and the sulphide ores formed in part by pervasive replacement of unconsolidated host rocks. U–Pb geochronological studies confirm a long-suspected correlation between the Duck Pond and Boundary deposits, which appear to be structurally displaced portions of a much larger mineralizing system developed at 509 ± 3 Ma. Altered aphyric flows in the immediate footwall of the Duck Pond deposit contained no zircon for dating, but footwall stringer-style and disseminated mineralization affects rocks as old as 514 ± 3 Ma at greater depths below the ore sequence. Unaltered mafic to felsic volcanic rocks that occur structurally above the orebodies were dated at 514 ± 2 Ma, and hypabyssal intrusive rocks that cut these were dated at 512 ± 2 Ma. Some felsic samples contain inherited (xenocrystic) zircons with ages of ca. 563 Ma. In conjunction with Sm–Nd isotopic data, these results suggest that the Tally Pond group was developed upon older continental or thickened arc crust, rather than in the ensimatic (oceanic) setting suggested by previous studies.


2010 ◽  
Vol 46 (0) ◽  
pp. 173-184 ◽  
Author(s):  
Taryn R. Gray ◽  
Jaroslav Dostal ◽  
Malcolm McLeod ◽  
Duncan Keppie ◽  
Yuanyuan Zhang

1992 ◽  
Vol 29 (12) ◽  
pp. 2583-2594 ◽  
Author(s):  
Kevin M. Ansdell ◽  
T. Kurtis Kyser ◽  
Mel R. Stauffer ◽  
Garth Edwards

The Missi Formation in the Flin Flon Basin forms part of a discontinuous series of molasse-type sediments found throughout the Early Proterozoic Trans-Hudson Orogen in northern Saskatchewan and Manitoba. The Flin Flon Basin contains a sequence of proximal-fan to braided-stream fluvial conglomerates and sandstones, which unconformably overlie subaerially weathered Amisk Group volcanic rocks. Stratigraphic way-up indicators have been preserved, even though these rocks have undergone greenschist-facies metamorphism and polyphase deformation. The sedimentary rocks are crosscut by intrusive rocks, which provide a minimum age of sedimentation of 1840 ± 7 Ma.Detrital zircons from each of the six stratigraphic subdivisions of the Flin Flon Basin were analyzed using the single-zircon Pb-evaporation technique. Euhedral to slightly rounded zircons dominate each sample, and these zircons give ages of between about 1854 and 1950 Ma. The Missi sediments were thus deposited between 1840 and 1854 Ma. Possible sources for the detrital zircons are Amisk Group felsic volcanic rocks and post-Amisk granitoid rocks and orthogneisses in adjacent domains within the Trans-Hudson Orogen. However, the immature character of the sedimentary rocks, the composition of clasts, the euhedral character of many of the zircons, and the range in ages suggest that most were likely derived from Amisk Group and granitoid rocks in the western Flin Flon Domain. Rounded zircons are uncommon but provide evidence for the reworking of older Proterozoic sedimentary rocks, or a distant Archean or Early Proterozoic granitoid terrane.


2015 ◽  
Vol 42 (4) ◽  
pp. 437 ◽  
Author(s):  
Phillips C. Thurston

Greenstone belts are long, curvilinear accumulations of mainly volcanic rocks within Archean granite−greenstone terranes, and are subdivided into two geochemical types: komatiite−tholeiite sequences and bimodal sequences. In rare instances where basement is preserved, the basement is unconformably overlain by platform to rift sequences consisting of quartzite, carbonate, komatiite and/or tholeiite. The komatiite−tholeiite sequences consist of km-scale thicknesses of tholeiites, minor intercalated komatiites, and smaller volumes of felsic volcanic rocks. The bimodal sequences consist of basal tholeiitic flows succeeded upward by lesser volumes of felsic volcanic rocks. The two geochemical types are unconformably overlain by successor basin sequences containing alluvial–fluvial clastic metasedimentary rocks and associated calc-alkaline to alkaline volcanic rocks.   Stratigraphically controlled geochemical sampling in the bimodal sequences has shown the presence of Fe-enrichment cycles in the tholeiites, as well as monotonous thicknesses of tholeiitic flows having nearly constant MgO, which is explained by fractionation and replenishment of the magma chamber with fresh mantle-derived material. Geochemical studies reveal the presence of boninites associated with the komatiites, in part a result of alteration or contamination of the komatiites. Within the bimodal sequences there are rare occurrences of adakites, Nb-enriched basalts and magnesian andesites.    The greenstone belts are engulfed by granitoid batholiths ranging from soda-rich tonalite−trondhjemite−granodiorite to later, more potassic granitoid rocks. Archean greenstone belts exhibit a unique structural style not found in younger orogens, consisting of alternating granitoid-cored domes and volcanic-dominated keels. The synclinal keels are cut by major transcurrent shear zones.   Metamorphic patterns indicate that low pressure metamorphism of the greenstones is centred on the granitoid batholiths, suggesting a central role for the granitoid rocks in metamorphosing the greenstones. Metamorphic patterns also show that the proportion of greenstones in granite−greenstone terranes diminishes with deeper levels of exposure.   Evidence is presented on both sides of the intense controversy as to whether greenstone belts are the product of modern plate tectonic processes complete with subduction, or else the product of other, lateral tectonic processes driven by the ‘mantle wind.’ Given that numerous indicators of plate tectonic processes – structural style, rock types, and geochemical features − are unique to the Archean, it is concluded that the evidence is marginally in favour of non-actualistic tectonic processes in Archean granite−greenstone terranes.RÉSUMÉLes ceintures de roches vertes sont des accumulations longiformes et curvilinéaires, principalement composées de roches volcaniques au sein de terranes granitique archéennes,  et étant subdivisées en deux types géochimiques: des séquences à komatiite–tholéite et des séquences bimodales. En de rares occasions, lorsque le socle est préservé, ce dernier est recouvert en discordance par des séquences de plateforme ou de rift, constituées de quartzite, carbonate, komatiite et/ou de tholéiite. Les séquences de komatiite-tholéiite forment des épaisseurs kilométriques de tholéiite, des horizons mineurs de komatiites, et des volumes de moindre importance de roches volcaniques felsiques. Les séquences bimodales sont constituées à la base, de coulées tholéiitiques surmontées par des volumes mineurs de roches volcaniques felsiques. Ces deux types géochimiques sont recouverts en discordance par des séquences de bassins en succession contenant des roches métasédimentaires clastiques fluvio-alluvionnaires associées à des roches volcaniques calco-alcalines à alcalines.   Un échantillonnage à contrôle stratigraphique des séquences bimodales a révélé la présence de cycles d’enrichissement en Fe dans les tholéiites, ainsi que des épaisseurs continues d’épanchements tholéiitiques ayant des valeurs presque constante en  MgO, qui s’explique par la cristallisation fractionnée et le réapprovisionnement de la chambre magmatique par du matériel mantélique. Les études géochimiques montrent la présence de boninites associées aux komatiites, résultant en partie de l’altération ou de la contamination des komatiites. Au sein des séquences bimodales, on retrouve en de rares occasions des adakites, des basaltes enrichis en Nb et des andésites magnésiennes.   Les ceintures de roches vertes sont englouties dans des batholites granitoïdes de composition passant des tonalites−trondhjémites−granodiorites enrichies en sodium, à des roches granitoïdes tardives plus potassiques. Les ceintures de roches vertes archéennes montrent un style structural unique que l’on ne retrouve pas dans des orogènes plus jeunes, et qui est constitué d’alternances de dômes à cœur granitoïdes et d`affaissements principalement composés de roches volcaniques. Les synclinaux formant les affaissements sont recoupés par de grandes zones de cisaillement.   Les profils métamorphiques indiquent que le métamorphisme de basse pression des roches vertes est centré sur les batholites, indiquant un rôle central des roches granitoïdes durant le métamorphisme des roches vertes. Les profils métamorphiques montrent également que la proportion de roches vertes dans les terranes granitiques diminue avec l’exposition des niveaux plus profonds.   On présente les arguments des deux côtés de l’intense controverse voulant que les ceintures de roches vertes soient le produit de processus moderne de la tectonique des plaques incluant la subduction, ou alors le produit d’autres processus tectoniques découlant du « flux mantélique ». Étant donné la présence des indicateurs des processus de tectonique des plaques – style structural, les types de roches, et les caractéristiques géochimiques – ne se retrouvent qu’à l’Archéen, nous concluons que les indices favorisent légèrement l’option de processus tectoniques non-actuels dans les terranes granitiques de roches vertes à l’Archéen.


1978 ◽  
Vol 15 (2) ◽  
pp. 207-219 ◽  
Author(s):  
R. E. S. Whitehead ◽  
W. D. Goodfellow

The volcanic rocks of the Tetagouche Group are predominantly dacitic to rhyolitic pyroclastics and lavas; mafic alkaline and tholeiitic volcanic rocks are less abundant. Lavas representing the intermediate range (such as andesites) are uncommon.As a consequence of intense Na2O and K2O metasomatism, the mafic volcanic rocks have been classified on the basis of relatively immobile elements such as Ti, Y, Zr, Nb, Ni and Cr.By reference to volcanic suites described elsewhere for varying geologic and tectonic environments, the Tetagouche Group appears to represent two geologic environments. It is proposed that the deposition of tholeiitic and alkaline basalts accompanied the rifting associated with the opening of the Proto-Atlantic, which began during Hadrynian times. However the calc-alkaline felsic volcanic rocks were deposited on the top of the basaltic sequence along a mature island arc system that developed with the closing of the Proto-Atlantic during Middle Ordovician time.


1977 ◽  
Vol 14 (7) ◽  
pp. 1687-1689 ◽  
Author(s):  
L. R. Fyffe ◽  
R. R. Irrinki ◽  
R. F. Cormier

A Rb–Sr whole-rock isochron age of 489 ± 14 Ma based on a half-life of 5.0 × 1010 years is obtained from deformed granites in north-central New Brunswick indicating a Lower Ordovician age for these rocks. The corresponding age using a half-life of 4.88 × 1010 years is 479 ± 14 Ma. The granite is consanguineous with felsic volcanic rocks of the Tetagouche Group.


2021 ◽  
Author(s):  
Eboubekrine Sedigh Maham ◽  
Houssa Ouali ◽  
Michel jébrak ◽  
Muhammed Ouabid

<p>The Richat Dome is a huge circular, slightly elliptical depression (~ 40 km in diameter) in the Proterozoic to Cambro-Ordovician sedimentary series of the NE part of the Mauritanian Taoudeni basin. This structure consists of a central zone that corresponds to a complex of dolomitic limestones and sedimentary rocks of Neoproterozoic age, cut by breccia silica and felsic volcanic rocks. A peripheral zone comprising Neoproterozoic to Late Ordovician sandstones and pelites into which carbonatite veins and two gabbroic annular dykes are injected.</p><p>Generally, the carbonatites represent a relatively rare type of igneous rock composed mainly of primary carbonate minerals (calcite and/or dolomite > 50 vol % of the rock) associated with phosphate minerals, silicates, and oxides. They contain the highest concentrations of rare earth elements (REE) of all igneous rocks. The carbonatites are also the main source of REE especially the light REE (La, Ce, Pr and Nd) as well as some critical metals such as Nb and Ta.</p><p>The aim of this study is to present a preliminary work on the carbonatite dykes of the Richat Dome: (1) detailed geological mapping of the various dykes, (2) petrographic, (3) mineralogical and (4) geochemical characterizations. The results obtained will be cross-referenced with other strategic deposits around the world</p>


Sign in / Sign up

Export Citation Format

Share Document