Relationship between the Aspy and Bras d'Or "terranes" in the northeastern Cape Breton Highlands, Nova Scotia

1993 ◽  
Vol 30 (9) ◽  
pp. 1773-1781 ◽  
Author(s):  
Shoufa Lin

According to previous interpretations, the Eastern Highlands shear zone separates Ordovician–Silurian volcano-sedimentary rocks to the west (Cheticamp Lake Gneiss of the Aspy "terrane") from late Precambrian sedimentary rocks and dioritic – tonalitic plutons and Early Ordovician granite to the east (Bras d'Or "terrane"). New mapping discovered a basal conglomerate of the Cheticamp Lake Gneiss that rests on deformed diorite of the Bras d'Or "terrane" and contains clasts similar or identical to rocks of the Bras d'Or "terrane." The late Precambrian rocks of the Bras d'Or "terrane" are also overlain by a volcano-sedimentary sequence of Silurian age (Clyburn Brook formation). These observations suggest that rocks of the Aspy "terrane" lie unconformably on those of the Bras d'Or "terrane." The Eastern Highlands shear zone is therefore not a terrane boundary. The Ordovician–Silurian rocks of the Aspy "terrane" are interpreted to have formed in an arc–back-arc basin system. The back-arc basin is interpreted to have formed by rifting in the Bras d'Or "terrane" and the Eastern Highlands shear zone to have been related to the closure of the basin.

2013 ◽  
Vol 55 (16) ◽  
pp. 1991-2007 ◽  
Author(s):  
Ping Shen ◽  
Hongdi Pan ◽  
Wenjiao Xiao ◽  
Xian-hua Li ◽  
Huawu Dai ◽  
...  

2019 ◽  
Author(s):  
N Piette-Lauzière ◽  
R Graziani ◽  
K P Larson ◽  
D A Kellett

1995 ◽  
Vol 32 (5) ◽  
pp. 545-554 ◽  
Author(s):  
Shoufa Lin

The Eastern Highlands shear zone in Cape Breton Island of the Canadian Appalachians is characterized by an amphibolite-facies deformation zone over 5 km wide overprinted by a greenschist-facies mylonite zone about 1 km wide. Deformation zones in both metamorphic grades dip steeply to the southeast with movement direction pitching steeply to the southwest, and shear sense indicators indicate the same sense of shear, that is, an east-over-west dip-slip movement with minor sinistral strike-slip component. Deformation in both conditions is constrained to the Late Silurian to Early Devonian (mainly Late Silurian). It is suggested that the greenschist-facies deformation represents the last stage of a single episode of deformation that occurred initially under amphibolite-facies conditions. The west-vergent shearing along the shear zone is antithetic to the westward subduction that led to the Silurian continent-continent collision, which is interpreted by tectonic wedging in this part of the Canadian Appalachians.


1990 ◽  
Vol 27 (10) ◽  
pp. 1371-1381 ◽  
Author(s):  
Robert P. Raeside ◽  
Sandra M. Barr

The Bras d'Or Terrane is defined in Cape Breton Island and consists of four distinctive components, (i) Low-pressure, regionally metamorphosed aluminous and calcareous gneiss of the Proterozoic Bras d'Or metamorphic suite is restricted to the southeastern part of the terrane. (ii) Late Proterozoic clastic-volcanic-carbonate units (Blues Brook, Malagawatch, McMillan Flowage, and Benacadie Brook formations, and Barachois River and Bateman Brook metamorphic suites) occur throughout the terrane and are generally at low metamorphic grades, although sillimanite grade has locally been achieved, (iii) A suite of 555–565 Ma calc-alkalic dioritic to granitic plutons was emplaced at pressures ranging from about 900 to less than 100 MPa. (iv) Early Ordovician granitic plutonism and Ordovician 40Ar/39Ar ages record regional heating.The Bras d'Or Terrane docked with the Mira Terrane to the southeast no earlier than the Ordovician. Cambro-Ordovician sedimentary rocks of the Mira Terrane appear locally to be thrust over the Bras d'Or Terrane. Mississippian sedimentary rocks overlap both terranes. The present boundary, the Macintosh Brook Fault, is mainly a Carboniferous feature. Docking with the Aspy Terrane to the northwest occurred along the Eastern Highlands shear zone and is constrained by a 375 Ma stitching pluton, the Black Brook Granitic Suite. Docking may have been initiated as early as 415 Ma, as indicated by reset 40Ar/39Ar ages near the boundary. The three Proterozoic components of the Bras d'Or Terrane have been recognized in the Brookville Terrane of southern New Brunswick, and Late Proterozoic gneiss, Late Proterozoic – early Cambrian calc-alkalic plutons and Ordovician granitic plutons have been reported in parts of the Hermitage Flexure of southern Newfoundland. The Bras d'Or Terrane may therefore be a regionally significant component of the northern Appalachian Orogen.


1979 ◽  
Vol 88 ◽  
pp. 63-71
Author(s):  
R.L Christie ◽  
J.R Ineson

A structurally complex region of mainly sedimentary rocks lies north-east of the exposures of Silurian flysch in eastern Peary Land, in the vicinity of G. B. Schley Fjord (map l). South-easterly structural and sedimentary trends follow the edge of the flysch belt in a general way, so that older rocks tend to be exposed north-eastwards, towards the coast. An irregular outcrop pattern results, however, principally from numerous major and minor faults that cut the land in virtuaIly all directions. Three and possibly more geological sequences are present: (l) Precambrian rocks, comprising both sedimentary and volcanic types; (2) late Precambrian? to Silurian, beginning with a dolomite formation and ending with flysch sandstone; and (3) late Palaeozoic and younger rocks, forming part of the Wandel Sea Basin which occurs as down-faulted sedimentary outliers in the older terrains. The latter sequence is described by H~kansson, this report. Prior to the present field season, the principal geological investigation of the G. B. Schley Fjord region was that by J. C. Troelsen, a member of the Danish Peary Land Expedition (1947-1950). Troeisen (1956a) established the presence of several of the rock units discussed below. Additional remarks were published by Troelsen (1956b) and Peel, Dawes & Troelsen (1974).


2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


Author(s):  
В. Зинько ◽  
V. Zin'ko ◽  
А. Зверев ◽  
A. Zverev ◽  
М. Федин ◽  
...  

The seismoacoustical investigations was made in the western part of the Kerch strait (Azov sea) near Kamysh-Burun spit. The fracture zone with dislocated sedimentary rocks layers and buried erosional surface was revealed to the west of spit. Three seismofacial units was revealed to the east of spit. The first unit was modern sedimentary cover. The second ones has cross-bedding features and was, probably, the part of early generation of Kamysh-Burun spit, which lied to the east of its modern position. The lower border of the second unit is the erosional surface supposed of phanagorian age. The third unit is screened by acoustic shedows in large part.


2002 ◽  
Vol 39 (5) ◽  
pp. 749-764 ◽  
Author(s):  
Nicholas Culshaw ◽  
Peter Reynolds ◽  
Gavin Sinclair ◽  
Sandra Barr

We report amphibole and mica 40Ar/39Ar ages from the Makkovik Province. Amphibole ages from metamorphic rocks decrease towards the interior of the province, indicating a first-order pattern of monotonic cooling with progressive migration of the province into a more distal back-arc location. The amphibole data, in combination with muscovite ages, reveal a second-order pattern consisting of four stages corresponding to changing spatial and temporal configurations of plutonism and deformation. (1) The western Kaipokok domain cooled through muscovite closure by 1810 Ma, long after the cessation of arc magmatism. (2) The Kaipokok Bay shear zone, bounding the Kaipokok and Aillik domains, cooled through amphibole closure during 1805–1780 Ma, synchronous with emplacement of syn-tectonic granitoid plutons. (3) Between 1740 and 1700 Ma, greenschist-facies shearing occurred along the boundary between the Kaipokok domain and Nain Province synchronous with A-type plutonism and localized shearing in the western Kaipokok domain, cooling to muscovite closure temperatures in the Kaipokok Bay shear zone, and A-type plutonism and amphibole closure or resetting in the Aillik domain. (4) In the period 1650–1640 Ma, muscovite ages, an amphibole age from a shear zone, and resetting of plutonic amphibole indicate a thermal effect coinciding in part with Labradorian plutonism in the Aillik domain. Amphibole ages from dioritic sheets in the juvenile Aillik domain suggest emplacement between 1715 and 1685 Ma. Amphibole ages constrain crystallization of small mafic plutons in the Kaipokok domain (reworked Archean foreland) to be no younger than 1670–1660 Ma. These ages are the oldest yet obtained for Labradorian plutonism in the Makkovik Province.


Sign in / Sign up

Export Citation Format

Share Document