Deformation of shale and dolomite in the Lewis thrust fault zone, northwest Montana, U.S.A.

1994 ◽  
Vol 31 (9) ◽  
pp. 1440-1448 ◽  
Author(s):  
S. Gregg Erickson

The Lewis thrust fault zone at Marias Pass, northwest Montana, is an example of a fault zone in which hanging-wall dolomite and footwall shale deformed at relatively shallow levels (~7 km). Fabric in the fault zone depends on the rock type. Deformation of dolomite involved coalescence and widening by cataclasis of fractures, formation of anastomosing cataclasite zones that isolate less deformed clasts, and rounding and reduction in size of clasts to produce random-fabric cataclasite. Whereas dolomite deformed by progressive widening of cataclasite zones, shale deformation localized along ultracataclasite zones and slip surfaces that bound shale duplexes. Fault rocks that include both footwall shale and hanging-wall carbonate are characterized by isoclinal, intrafolial folds and a foliation that is defined by alternating shale- and carbonate-rich bands, elongate lenses of carbonate, and preferred orientation of phyllosilicates. Calcitization and subsequent solution of hanging wall rocks incorporated in the shale contributed to the development of this planar fabric. Lenses of hanging-wall carbonate were isolated in footwall shale by the emplacement of shale tongues into the hanging wall along mesoscopic faults. Displacement on the Lewis fault was accommodated by deformation of both dolomite and shale. Grain-size reduction of dolomite, mixing of dolomite and shale, and calcitization of dolomite in the fault zone may have enhanced diffusional processes in the carbonate and thereby weakened the fault zone.

2020 ◽  
pp. petgeo2020-014
Author(s):  
Theresa Schröckenfuchs ◽  
Volker Schuller ◽  
Andras Zamolyi ◽  
Elias Mekonnen ◽  
Bernhard Grasemann

In order to calibrate equations for fault seal capacities to a specific basin, faults were analysed using core material from several Neogene hydrocarbon fields in the Vienna Basin, Austria. All studied specimens are siliciclastic rocks that were sampled from a depth interval of <2000 m, and share a similar depth at time of faulting, diagenetic conditions and maximum burial depth. Laboratory results showed a permeability reduction in all fault rocks compared to the host rocks. Both the highest and the lowest fault seal capacities were observed in the same fault rock type with a low phyllosilicate and clay content, and classifying as cataclastic deformation bands. Investigating the strong permeability variations within these fault rocks, microscopic analyses revealed that the fault seal potential is strongly linked to the detrital dolomite content in the host rock. Grain-size reduction processes occur preferably in the dolomite grains, accompanied by cementation. Our study suggests that – in addition to using standard fault seal analysis algorithms – accounting for host rock composition and grain-size reduction therein might help to further constrain fault seal behaviour in shallow depths. Fault seal mechanisms need to be understood on field, formation and micro scales before drawing conclusions for a full basin calibration.Thematic collection: This article is part of the Fault and top seals collection available at: https://www.lyellcollection.org/cc/fault-and-top-seals-2019


2021 ◽  
pp. 1-20
Author(s):  
Walter A. Sullivan ◽  
Emma J. O’Hara

Abstract This article integrates field, powder X-ray diffraction and microstructural data to constrain deformation mechanisms in and the rheology of granite-derived fault rocks exposed along the SE side of the crustal-scale, strike-slip Kellyland fault zone. Deformation in this area of the Kellyland fault zone localized during cooling and is marked by (1) foliated granite, (2) a ∼50 m wide band of pulverized foliated granite, (3) a ∼2.8 m wide breccia zone hosting coeval shear zones, and (4) a >100 m wide ultramylonite zone. The earliest fabric in the foliated granite is defined by elongated quartz grains, and quartz dislocation creep was the rate-controlling deformation mechanism. Seismogenic deformation initiated when recorded flow stresses reached 96–104 MPa at temperatures of 400–450 °C and is marked by coeval pulverization and formation of breccia. Interseismic viscous creep at similar flow stresses is recorded by mutual cross-cutting relationships between breccia-hosted shear zones, brittle fractures and pseudotachylyte. Field and microstructural observations indicate that breccia-hosted shear zones are low-strain equivalents of the >100 m wide ultramylonite zone, and seismogenic deformation abated as the ultramylonite formed. The rheology of ultramylonites was governed by grain-size-sensitive creep at 112–124 MPa flow stresses. Hence, from the onset of seismogenesis, the Kellyland fault zone was likely a constant-stress system wherein the rate-controlling mechanism shifted from episodic seismogenic slip and interseismic viscous creep to steady state grain-size-sensitive creep in ultramylonites derived from brittle fault rocks. Flow stresses recorded by these rocks also imply that the whole zone was relatively weak if the brittle–viscous transition and uppermost viscous zone are the strongest part of the crust.


2021 ◽  
Author(s):  
Benjamin Moris-Muttoni ◽  
Hugues Raimbourg ◽  
Romain Augier ◽  
Rémi Champallier ◽  
Emmanuel Le Trong ◽  
...  

&lt;p&gt;Whether seismic rupture propagates over large distances to generate mega-earthquakes or on the contrary slows down quickly, is heavily dependent on the slip processes operating within the fault core, such as frictional melting or intense grain-size reduction and amorphization. The record, in fossil fault zones, of seismic slip, consists in many instances in Black Faults Rocks (BFR), that consists in a generally thin dark and aphanitic veins similar to volcanic glasses, which cross-cuts sharply a weakly foliated tectonic m&amp;#233;lange, and have been interpreted as resulting from quenching of a melt (i.e. pseudotachylytes). Such interpretation has nevertheless been questioned because identical (micro- and nano-) textures have been observed on intensely comminuted natural fault rocks and on slow creep experiments on crustal rocks.&lt;/p&gt;&lt;p&gt;In this study, we report a new dataset of high spatial-resolution Raman Spectroscopy of Carbonaceous Materials (RSCM) profiles across natural BFR from two accretionary complexes. RSCM is sensitive to both temperature and deformation. We have carried out analyses on Okitsu and Nobeoka BFR from the Shimanto Belt and Kodiak BFR from the Kodiak Accretionary Complex to discriminate the slip weakening process. The Raman Intensity Ratio (i.e. R1 in Beyssac et al., 2002) and the Area ratio (RA1 in Lahfid et al., 2010) show a drastic and discontinuous stepped increase along profiles across the BFR, revealing a higher crystallinity. Moreover, in spite of scattering, highest values have been measured on the rim between the BFR and the host-rock. Fluidization structures, interpreted as injection veins, show similar values to the ones in the host rock. Additionally, using an experimentally calibrated kinetics 1D modelling of Intensity ratio evolution with temperature, we compared the natural Raman spectroscopy profiles to different scenarios of temperature increase during seismic slip. In the three examples of BFR from accretionary complexes interpreted as natural pseudotachylytes, RSCM profiles are not consistent with a molten origin and must reflect mechanical wear during deformation.&lt;/p&gt;&lt;p&gt;Consequently, these results bear major consequences on the dynamics of faulting in accretionary complexes, as the slip-weakening processes that occur during seismic slip rely on extreme grain-size reduction and fluidization rather than melting.&lt;/p&gt;


2004 ◽  
Vol 324 (2-3) ◽  
pp. 140-151 ◽  
Author(s):  
J.Y Huang ◽  
J.R Hwang ◽  
J.J Yeh ◽  
C.Y Chen ◽  
R.C Kuo ◽  
...  

2000 ◽  
Vol 87 (9) ◽  
pp. 6860-6862 ◽  
Author(s):  
Satoru Yoshimura ◽  
D. D. Djayaprawira ◽  
Tham Kim Kong ◽  
Yusuke Masuda ◽  
Hiroki Shoji ◽  
...  

2008 ◽  
Vol 62 (17-18) ◽  
pp. 2947-2949 ◽  
Author(s):  
J.R. Martínez ◽  
J.A. de la Cruz-Mendoza ◽  
S.A. Palomares-Sánchez ◽  
G. Vázquez-García ◽  
G. Ortega-Zarzosa ◽  
...  

2018 ◽  
Vol 17 ◽  
pp. 129-136 ◽  
Author(s):  
L. Pilloni ◽  
C. Cristalli ◽  
O. Tassa ◽  
I. Salvatori ◽  
S. Storai

2006 ◽  
Vol 114 ◽  
pp. 171-176 ◽  
Author(s):  
Joanna Zdunek ◽  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

In this work, Al-Mg-Mn-Si alloy (5483) in the as-received and severe plastically deformed states was used. Plastic deformation was carried out by hydrostatic extrusion, and three different true strain values were applied 1.4, 2.8 and 3.8. All specimens were subjected to tensile tests and microhardness measurements. The investigated material revealed an instability during plastic deformation in the form of serration on the stress-strain curves, the so called Portevin-Le Chatelier effect It was shown that grain size reduction effected the character of the instability.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 837-849 ◽  
Author(s):  
D. Díaz ◽  
A. Maksymowicz ◽  
G. Vargas ◽  
E. Vera ◽  
E. Contreras-Reyes ◽  
...  

Abstract. The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault surface rupture propagation, fault splays and fault segment transfer zones.


Sign in / Sign up

Export Citation Format

Share Document