A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen

2002 ◽  
Vol 59 (3) ◽  
pp. 514-530 ◽  
Author(s):  
Stephanie R Davenport ◽  
Nicholas J Bax

The stable isotopes of carbon and nitrogen were used to investigate trophic relationships of fish and invertebrates on the continental shelf of southeastern Australia. We examined 87 fish species, marine mammals, penguins, invertebrates, algal samples, suspended particulate organic matter (POM), and sediments. The main source of primary production is oceanic phytoplankton, although there is evidence of a seagrass contribution to the benthos. Marine mammals, penguins, some benthic invertebrates, and some benthic fish filled the highest trophic positions. Sources of variability in isotope results included temporal (POM, some fish) and spatial (POM, sediments) elements, bottom depth (some fish), and size (some fish). Fish had muscle δ15N values of 9.6‰ to 14.7‰ and δ13C values of –20.6‰ to –14.6‰. Cluster analysis on fish stable isotope results produced fish groups that could be interpreted with trophic and habitat information. Trophic relationships in fish, suggested by stable isotope results, were supported by stomach contents analysis. Stable isotope results may indicate more representative trophic relationships, as stomach contents analyses tend to group prey by taxon rather than by trophodynamic position. In fish and invertebrates, stable isotope results related more to functional patterns of feeding than to taxonomic relationships.

Author(s):  
R.I. Ruiz-Cooley ◽  
Unai Markaida ◽  
D. Gendron ◽  
S. Aguíñiga

Stomach contents and carbon (C) and nitrogen (N) stable isotope analysis were used to evaluate trophic relationships of jumbo squid, Dosidicus gigas. Buccal masses, beaks and stomach contents of large and medium maturing-sized jumbo squid and muscle from its main prey, the myctophid Benthosema panamense, were collected in the Gulf of California, Mexico during 1996, 1997 and 1999. Both the quantified C and N-isotope ratios in muscle, and stomach content analysis revealed that larger-sized maturing squid showed a higher trophic position than medium-sized individuals. However, a discrepancy between stomach contents versus stable isotope analyses was found in evaluating trophic relationships. Simple dilution models as a function of growth were used to estimate the C and N renewal dietary shift for jumbo squid. Estimates of the initial C and N pools in D. gigas with an initial age of 70 days and 210 days indicated isotopic shifts of 32% after a threefold biomass increase and 25% after a fourfold biomass increase, respectively. Additionally, beak samples of jumbo squid were evaluated as an alternative tissue to estimate squid trophic position using stable isotopes. The results showed a significant correlation between stable isotope ratios from muscle and beak samples. Muscle isotope values were higher than beak by 1% and 4% for δ13C and δ15N respectively. A test with jumbo squid beaks collected from a stomach of a stranded sperm whale confirmed the viability of this method.


2020 ◽  
Vol 101 (5) ◽  
pp. 1332-1344
Author(s):  
Ève Rioux ◽  
Fanie Pelletier ◽  
Martin-Hugues St-Laurent

Abstract Carbon and nitrogen stable isotope ratios are used widely to describe wildlife animal diet composition and trophic interactions. To reconstruct consumer diet, the isotopic differences between consumers and their diet items—called the trophic discrimination factor (TDF)—must be known. Proxies of diet composition are sensitive to the accuracy of TDFs. However, specific TDFs are still missing for many species and tissues because only a few controlled studies have been carried out on captive animals. The aim of this study was to estimate TDFs for hair and blood for carbon and nitrogen stable isotopes for caribou, moose, white-tailed deer, eastern coyote, and black bear. We obtained stable isotope ratios for diet items, hair, and blood samples, of 21 captive adult mammals. Diet–tissue discrimination factors for carbon in hair (∆ 13CLE) ranged from 0.96‰ to 3.72‰ for cervids, 3.01‰ to 3.76‰ for coyote, and 5.15‰ to 6.35‰ for black bear, while nitrogen discrimination factors (∆ 15N) ranged from 2.58‰ to 5.95‰ for cervids, 2.90‰ to 3.13‰ for coyote, and 4.48‰ to 5.44‰ for black bear. The ∆ 13CLE values in coyote blood components ranged from 2.20‰ to 2.69‰ while ∆ 15N ranged from 3.30‰ to 4.41‰. In caribou serum, ∆ 13CLE reached 3.34 ± 1.28‰ while ∆ 15N reached 5.02 ± 0.07‰. The TDFs calculated in this study will allow the evaluation of diet composition and trophic relationships between these five mammal species and will have important implications for the study of endangered caribou populations for which the use of noninvasive tissue sampling is highly relevant.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82205 ◽  
Author(s):  
Tatiana Lemos Bisi ◽  
Paulo Renato Dorneles ◽  
José Lailson-Brito ◽  
Gilles Lepoint ◽  
Alexandre de Freitas Azevedo ◽  
...  

2006 ◽  
Vol 86 (6) ◽  
pp. 1443-1447 ◽  
Author(s):  
D. Fourgon ◽  
G. Lepoint ◽  
I. Eeckhaut

Analyses of the natural abundance of carbon and nitrogen stable isotopes were performed to investigate the feeding habits of two ophiuroids, Ophiomastix venosa and Ophiocoma scolopendrina, and to assess the potential benefit obtained by the symbiotic Ophiomastix venosa juveniles. A tracer experiment was also carried out to clarify the contribution of algae to the nitrogen uptake amongst the tested ophiuroids. Our results suggest that Ophiocoma scolopendrina adults occupy a higher position in the food web than Ophiomastix venosa and mainly feed on neuston. In contrast, O. venosa adults feed on the alga Sargassum densifolium and on organic matter associated with sediment. Free juveniles and symbiotic juveniles of O. venosa have intermediate δ13C values between both adult species. The high proportion of 13C in the symbiotic juveniles compared to the one in their conspecific adults indicates that their diet slightly differs from the latter and is closer to that of Ophiocoma scolopendrina. This raises the hypothesis that symbiotic juveniles steal neuston from their associated host, O. scolopendrina.


2019 ◽  
Vol 99 (06) ◽  
pp. 1459-1463
Author(s):  
R. L. Bustos ◽  
G. A. Daneri ◽  
E. A. Varela ◽  
A. Harrington ◽  
A. V. Volpedo ◽  
...  

AbstractCephalopods are important prey in the diet of top predators, such as marine mammals and seabirds. However, detailed information on their trophic relationships in the Patagonian marine ecosystem is scarce, including those cephalopod species with commercial interest. The aims of this study were to evaluate the composition of the cephalopod component in the diet of Otaria byronia and determine the habitat use and trophic levels of their main cephalopod prey by measuring the stable isotopic signature of cephalopod beaks. Between May 2005 and February 2009, fresh faecal samples were collected from two sea lions rookeries in San Matias Gulf. Cephalopods occurred in 39.4% of the 1112 samples collected during the whole period of study. The dominant prey species was Octopus tehuelchus, which occurred in 45.8% of scats containing cephalopod remains, and represented 58.7% in terms of numerical abundance and 52.0% in mass of cephalopods consumed. The second species most consumed was the myopsid Doryteuthis gahi. The significant higher δ15N values of O. tehuelchus beaks in comparison with those of D. gahi showed that these two species have different trophic levels while occupying similar habitat (δ13C values) in neritic waters of the Patagonian shelf.


Hydrobiologia ◽  
2009 ◽  
Vol 630 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Tobias Tamelander ◽  
Caroline Kivimäe ◽  
Richard G. J. Bellerby ◽  
Paul E. Renaud ◽  
Svein Kristiansen

2000 ◽  
Vol 78 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Jeffrey F Kelly

Differential fractionation of stable isotopes of carbon during photosynthesis causes C4 plants and C3 plants to have distinct carbon-isotope signatures. In addition, marine C3 plants have stable-isotope ratios of carbon that are intermediate between C4 and terrestrial C3 plants. The direct incorporation of the carbon-isotope ratio (13C/12C) of plants into consumers' tissues makes this ratio useful in studies of animal ecology. The heavy isotope of nitrogen (15N) is preferentially incorporated into the tissues of the consumer from the diet, which results in a systematic enrichment in nitrogen-isotope ratio (15N/14N) with each trophic level. Consequently, stable isotopes of nitrogen have been used primarily to assess position in food chains. The literature pertaining to the use of stable isotopes of carbon and nitrogen in animal trophic ecology was reviewed. Data from 102 studies that reported stable-isotope ratios of carbon and (or) nitrogen of wild birds and (or) mammals were compiled and analyzed relative to diet, latitude, body size, and habitat moisture. These analyses supported the predicted relationships among trophic groups. Carbon-isotope ratios differed among species that relied on C3, C4, and marine food chains. Likewise, nitrogen-isotope ratios were enriched in terrestrial carnivorous mammals relative to terrestrial herbivorous mammals. Also, marine carnivores that ate vertebrates had nitrogen-isotope ratios that were enriched over the ratios of those that ate invertebrates. Data from the literature also indicated that (i) the carbon-isotope ratio of carnivore bone collagen was inversely related to latitude, which was likely the result of an inverse relationship between the proportion of carbon in the food chain that was fixed by C4 plants and latitude; (ii) seabirds and marine mammals from northern oceans had higher nitrogen-isotope ratios than those from southern oceans; (iii) the nitrogen-isotope ratios of terrestrial mammals that used xeric habitats were higher than the ratios of those that used mesic habitats, indicating that water stress can have important effects on the nitrogen-isotope ratio; (iv) there was no relationship between body mass and nitrogen-isotope ratio for either bone collagen or muscle of carnivores; and (v) there was linear covariation between stable-isotope ratios of carbon and nitrogen in marine food chains (but not in terrestrial C3 or C4 food chains), which is likely a product of increases in carbon-isotope ratio with trophic level in marine food chains. Differences in stable-isotope composition among trophic groups were detected despite variation attributable to geographic location, climate, and analytical techniques, indicating that these effects are large and pervasive. Consequently, as knowledge of the distribution of stable isotopes of carbon and nitrogen increases, they will probably become an increasingly important tool in the study of avian and mammalian trophic ecology.


1994 ◽  
Vol 59 (2) ◽  
pp. 288-303 ◽  
Author(s):  
Noreen Tuross ◽  
Marilyn L. Fogel ◽  
Lee Newsom ◽  
Glen H. Doran

A paleodietary analysis of the mid-Holocene mortuary site, Windover (8BR246), based on carbon and nitrogen bone-collagen values and archaeobotanical information is consistent with a subsistence strategy that utilized river-dwelling fauna and a range of terrestrial flora, such as grapes and prickly pear. The isotopic analysis does not support the extensive human dietary use of either marine mammals or classic terrestrial fauna such as deer or rabbit. Seasonal (late summer/early fall) use of the site is indicated by the range of flora found in association with the burials.


Sign in / Sign up

Export Citation Format

Share Document