scholarly journals Thermal dynamics of ovarian maturation in Atlantic cod (Gadus morhua)

2010 ◽  
Vol 67 (4) ◽  
pp. 605-625 ◽  
Author(s):  
Olav Sigurd Kjesbu ◽  
David Righton ◽  
Maria Krüger-Johnsen ◽  
Anders Thorsen ◽  
Kathrine Michalsen ◽  
...  

The timing and success of spawning in marine fish are of fundamental importance to population persistence and distribution and, for commercial species, sustainability. Their physiological processes of reproduction are regulated, in part, by water temperature, and therefore changes in marine climate may have dramatic effects on spawning performance. Using adult Atlantic cod ( Gadus morhua ) as a case study, we examined the links between water temperature, body size, vitellogenesis, and spawning time by conducting extensive laboratory and field studies. Our experiments documented that vitellogenesis generally starts at autumnal equinox and that oocyte growth and investment are greater in cod held at warmer temperatures. Furthermore, spawning occurred earlier when oocyte growth was more rapid. Large females spawned earlier than smaller females at warmer temperatures, but this effect vanished at colder temperatures. The experimental results were confirmed by measurements of oocyte growth collected from wild-caught cod in northern (Barents Sea) and southern (Irish Sea and North Sea) populations. The established, general model of oocyte maturation was consistent with published egg production curves of cod from these waters, considering relevant in situ temperatures recorded by individual data-storage tags on cod. These findings have considerable relevance for future studies of fish recruitment in relation to climate change.

2020 ◽  
Vol 77 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Christian Irgens ◽  
Arild Folkvord ◽  
Håkon Otterå ◽  
Olav S. Kjesbu

Specific impacts of somatic growth, sexual maturation, and spawning events on otolith zone formation in Atlantic cod (Gadus morhua) were assessed in a 33-month tank experiment, using Barents Sea cod and Norwegian coastal cod. High and low feeding ration combinations were used to mimic environmental stressors in the field. For both stocks, apparent macrostructural “spawning zones” in otoliths are registered in statutory stock monitoring programs to estimate age at maturity, thus adding key information to stock biomass assessments. We found that substantial energy investments in reproduction caused reductions in otolith growth and altered proportional width between translucent and opaque zones. These effects, however, were only statistically significant among individuals with high reproductive investments, while otoliths from individuals with low investments did not differ from the otoliths for immatures. Reproduction may thus not necessarily induce spawning zones, and alternatively, spawning zones may not necessarily reflect reproduction. Altogether, this suggests that the individual energy level, as a premise for metabolic activity, plays a key role in the formation of such zones and thus is related to environmental conditions.


2019 ◽  
Vol 76 (9) ◽  
pp. 1515-1527 ◽  
Author(s):  
Björn Björnsson

This study supports the hypothesis that well-fed cod (Gadus morhua) seek higher temperatures to increase growth rate, and poorly fed cod select lower temperatures to save metabolic energy. Depth and temperature of free-ranging adult cod (44–79 cm) were studied with data storage tags as part of a ranching project in an Icelandic fjord. Forage fish were regularly provided at four feeding stations where cod formed distinct “herds” (herd cod) that did not mingle much with the rest of the unconditioned cod in the fjord (wild cod). Several parameters (stomach fullness, liver index (fat reserves), condition factor, and growth rate) indicated that food intake was much greater in herd cod than in wild cod. In August, when the thermocline was well established, the herd cod remained in shallow (15–35 m) and warm water (8–10 °C), whereas the wild cod stayed in deep (80–90 m) and cold water (3–4 °C), but occasionally both groups explored depths and temperatures outside their preferred range. After vertical mixing in autumn when thermoregulation was not possible, the depth difference between the two groups decreased significantly.


Author(s):  
J. A. Perez-Calderon

INTRODUCTIONA number of nematodes are known to develop in decapod crustaceans. These parasite nematodes are present in the coelom of the host either free or surrounded by different types of host cells. All belong to the order Ascaridida or Spirurida and most of them develop only to the third larval stage in the decapod host; further development takes place in a predator of the crustacean which is generally a teleost or elasmobranch (Berland, 1961; Ouspenskaia, 1960; Petter, 1970; Poinar & Kuris, 1975;Uspenskaja, 1953; Yamaguti, 1961). The life-cycle in most cases is not fully understood. Ouspenskaia (1960) and Uspenskaja (1953, 1963) deduced the life-cycle for Ascarophis morrhuae van Beneden and A. filiformis Poljanski in the Barents Sea by relating the larvae found in decapod crustaceans through affinity of characters to the adults present in cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus L.). Similarly, the life-cycle of the spirurid Proleptus obtusus was described by Lloyd (1928); the larvae occur in a decapod crustacean, usually the hermit crab Pagurus bernhardus L. and in some cases the shore crab Carcinus maenas L. and the adults are found in the lesser spotted dogfish (Scyliorhinus canicula L.). A more complex life-cycle has been proposed for some anisakids such as Anisakis, Contracaecum and Hysterothylacium (Berland, 1961; Norris & Overstreet, 1976; Wootten, 1978) in which more than one intermediate host is required.


1981 ◽  
Vol 4 (6) ◽  
pp. 527-532 ◽  
Author(s):  
E. C. EGIDIUS ◽  
J. V. JOHANNESSEN ◽  
E. LANGE

1999 ◽  
Vol 77 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Steven M Carr ◽  
David S Kivlichan ◽  
Pierre Pepin ◽  
Dorothy C Crutcher

Phylogenetic relationships among 14 species of gadid fishes were investigated with portions of two mitochondrial DNA (mtDNA) genes, a 401 base pair (bp) segment of the cytochrome b gene, and a 495 bp segment of the cytochrome oxidase I gene. The molecular data indicate that the three species of gadids endemic to the Pacific Basin represent simultaneous invasions by separate phylogenetic lineages. The Alaskan or walleye pollock (Theragra chalcogramma) is about as closely related to the Atlantic cod (Gadus morhua) as is the Pacific cod (Gadus macrocephalus), which suggests that T. chalcogramma and G. macrocephalus represent separate invasions of the Pacific Basin. The Pacific tomcod (Microgadus proximus) is more closely related to the Barents Sea navaga (Eleginus navaga) than to the congeneric Atlantic tomcod (Microgadus tomcod), which suggests that the Pacific species is derived from the Eleginus lineage and that Eleginus should be synonymized with Microgadus. Molecular divergences between each of the three endemic Pacific species and their respective closest relatives are similar and consistent with contemporaneous speciation events following the reopening of the Bering Strait ca. 3.0-3.5 million years BP. In contrast, the Greenland cod (Gadus ogac) and the Pacific cod have essentially identical mtDNA sequences; differences between them are less than those found within G. morhua. The Greenland cod appears to represent a contemporary northward and eastward range extension of the Pacific cod, and should be synonymized with it as G. macrocephalus.


2017 ◽  
Vol 74 (6) ◽  
pp. 1561-1573 ◽  
Author(s):  
Kate McQueen ◽  
C. Tara Marshall

AbstractWarming temperatures caused by climate change have the potential to impact spawning phenology of temperate marine fish as some species have temperature-dependent gonadal development. Inter-annual variation in the timing of Atlantic cod (Gadus morhua) spawning in the northern North Sea, central North Sea and Irish Sea was estimated by calculating an annual peak roe month (PRM) from records of roe landings spanning the last three decades. A trend towards earlier PRM was found in all three regions, with estimates of shifts in PRM ranging from 0.9 to 2.4 weeks per decade. Temperatures experienced by cod during early vitellogenesis correlated negatively with PRM, suggesting that rising sea temperatures have contributed to a shift in spawning phenology. A concurrent reduction in the mean size of spawning females excluded the possibility that earlier spawning was due to a shift in size structure towards larger individuals, as large cod spawn earlier than smaller-sized individuals in the North Sea. Further research into the effects of climate change on the phenology of different trophic levels within the North Sea ecosystem should be undertaken to determine whether climate change-induced shifts in spawning phenology will result in a temporal mismatch between cod larvae and their planktonic prey.


2019 ◽  
Author(s):  
Tina Graceline Kirubakaran ◽  
Øivind Andersen ◽  
Michel Moser ◽  
Mariann Arnyasi ◽  
Philip McGinnity ◽  
...  

ABSTRACTCurrently available genome assemblies for Atlantic cod (Gadus morhua) have been constructed using DNA from fish belonging to the Northeast Arctic Cod (NEAC) population; a migratory population feeding in the cold Barents Sea. These assemblies have been crucial for the development of genetic markers which have been used to study population differentiation and adaptive evolution in Atlantic cod, pinpointing four discrete islands of genomic divergence located on linkage groups 1, 2, 7 and 12. In this paper, we present a high-quality reference genome from a male Atlantic cod representing a southern population inhabiting the Celtic sea. Structurally, the genome assembly (gadMor_Celtic) was produced from long-read nanopore data and has a combined contig size of 686 Mb with a N50 of 10 Mb. Integrating contigs with genetic linkage mapping information enabled us to construct 23 chromosome sequences which mapped with high confidence to the latest NEAC population assembly (gadMor3) and allowed us to characterize in detail large chromosomal inversions on linkage groups 1, 2, 7 and 12. In most cases, inversion breakpoints could be located within single nanopore contigs. Our results suggest the presence of inversions in Celtic cod on linkage groups 6, 11 and 21, although these remain to be confirmed. Further, we identified a specific repetitive element that is relatively enriched at predicted centromeric regions. Our gadMor_Celtic assembly provides a resource representing a ‘southern’ cod population which is complementary to the existing ‘northern’ population based genome assemblies and represents the first step towards developing pan-genomic resources for Atlantic cod.


Sign in / Sign up

Export Citation Format

Share Document