Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition

2011 ◽  
Vol 68 (3) ◽  
pp. 387-399 ◽  
Author(s):  
Brian C. Weidel ◽  
Stephen R. Carpenter ◽  
James F. Kitchell ◽  
M. Jake Vander Zanden

Stable isotopes are widely employed to describe energy flow in aquatic communities, though interpretation of results can be confounded by the fact that organisms integrate over vastly different time scales. We used results from a 56-day whole-lake 13C addition and a bioenergetic modeling approach to estimate dorsal muscle carbon turnover rates in a natural setting for three sizes of bluegill ( Lepomis macrochirus ), largemouth bass ( Micropterus salmoides ), and yellow perch ( Perca flavescens ). Generally, dynamic δ13C models with a metabolic tissue replacement term were better supported than models predicting isotopic change from growth alone, except when relative growth rates were highest (age 0 bluegill). Across species and size classes, the percentage of carbon change due to tissue replacement was variable (2%–80%) and independent of fish size. The half-life of δ13C in age 0 fishes was similar and ranged from 8 to 18 days. In contrast, adult tissue half-lives were much longer (116–173 days). Based on these and previously published estimates, fish mass (g) was a strong predictor of fish carbon turnover rates, λ: log(λ) = –3.65 – 0.20 log(mass), r2 = 0.71.


1995 ◽  
Vol 73 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
Charles H. Jagoe ◽  
Dave A. Welter

Chromosome number and genomic DNA content vary widely among fish species, and ploidy can vary within species. This suggests that the size, shape, and morphological features of cell nuclei may also vary. Nucleated erythrocytes of fish are an easily sampled homogeneous population of differentiated cells ideal for inter- and intra-species comparisons. We collected blood samples from largemouth bass (Micropterus salmoides), bluegill (Lepomis macrochirus), chain pickerel (Esox niger), yellow perch (Perca flavescens), mosquitofish (Gambusia holbrooki), redeye bass (Micropterus coosae), and rainbow trout (Oncorhynchus mykiss) and removed cytoplasm and nuclear membranes from blood cells. Individual nuclei were examined and measured using scanning electron microscopy and a computerized image analysis system, and inter- and intra-species differences evaluated by nested analysis of variance. Nuclear size and shape varied significantly among species. Isolated nuclei had conspicuous apertures or holes, and the number and size of these holes also varied significantly among species. Variations in nuclear size and structure within species were small compared with interspecies differences. Little is known of the ultrastructure of erythrocyte nuclei in lower vertebrates, but their structure differs considerably from that of other vertebrate non-erythroid cells, suggesting that the organization of their DNA and associated proteins may be different.



1985 ◽  
Vol 42 (4) ◽  
pp. 791-796 ◽  
Author(s):  
Daniel W. Coble ◽  
Gordon B. Farabee ◽  
Richard O. Anderson

Fourteen species of freshwater fish were trained to execute a simple conditioned response in a shuttle box – to move in response to light to avoid an electrical shock. There was no relation between learning ability and phylogenetic position. Better learners included striped bass (Morone saxatilis), bigmouth buffalo (Ictiohus cyprinellus), common carp (Cyprinus carpio), and channel catfish (Ictalurus punctatus). Bluegill (Lepomis macrochirus) and northern pike (Esoxlucius) were poor learners. Yellow perch (Perca flavescens) and redbelly tilapia (Tilapia zilli) could not be trained. Some fish retained their learned behavior for months, although performance deteriorated with time. Older channel catfish learned better than juveniles, but there was no difference between juvenile and older largemouth bass (Micropterus salmoides). Temperature (18–28 °C) and feeding level (ranging from starvation for 25 d to ad libitum) did not affect learning of channel catfish, but the protozoan disease, ichthyophthiriasis, and perhaps our treatment of fish for the disease retarded it.



1987 ◽  
Vol 65 (8) ◽  
pp. 1972-1977 ◽  
Author(s):  
James A. Hoyle ◽  
Allen Keast

Handling time for prey of different sizes and morphological types was studied in the largemouth bass (Micropterus salmoides). Prey ranged in size from about 1/10 to 2/3 the length of the bass. Handling time increased rapidly with prey of increasing size. For prey of equivalent length, crayfish were the most time-consuming morphological type to handle and swallow, followed by bluegill (Lepomis macrochirus), yellow perch (Perca flavescens), brook stickleback (Culaea inconstans), bluntnose minnow (Pimephales notatus), and finally bullfrog tadpoles (Rana catesbeiana). The ratio of prey length to bass length that minimized handling time per unit weight of prey consumed, for prey types common in the diet of largemouth bass, was 0.22 for tadpoles, 0.24 for yellow perch and crayfish, and 0.29 for bluegill. Comparison of the experimentally derived optimum prey size based on handling time with that consumed by three natural populations showed that bass commonly chose prey of similar or smaller size than the optimal predicted. The reasons for this are discussed.



2021 ◽  
Vol 13 (5) ◽  
pp. 2486
Author(s):  
Jong-Yun Choi ◽  
Seong-Ki Kim

Empirical studies suggest that changes in the density of top predators, such as carnivorous fish, in freshwater food webs, strongly affect not only fish communities but also various primary and secondary consumers. Based on these findings, we explored how differences in the utilization of carnivorous fish (i.e., Northern Snakehead, Channa argus) by humans affected the fish and cladoceran community structure as well as the settlement of exotic fish species (i.e., Lepomis macrochirus and Micropterus salmoides) in 30 wetlands located in the upper and lower reaches of the Nakdong River. Our results show that in the mid–lower reaches of the Nakdong River, the density of C. argus was low, while high densities of L. macrochirus and M. salmoides were observed. Exotic fish species are frequently consumed by C. argus, leading to a low density of L. macrochirus and M. salmoides in the upper reaches, which supported a high density of C. argus. However, in the mid–lower reaches, the density of L. macrochirus was high because of the frequent collection of C. argus by fishing activities. The dominance of L. macrochirus significantly changed the structure of cladoceran communities. L. macrochirus mainly feeds on pelagic species, increasing the density of epiphytic species in the mid–lower reaches. The continued utilization of C. argus by humans induced a stable settlement of exotic fish species and strongly affected the community structures of primary consumers in the 30 wetlands. The frequency of C. argus collection has to be reduced to secure biodiversity in the mid–lower reaches of the Nakdong River, which will reduce the proportion of exotic fish species and increase the conservation of native fish.



Koedoe ◽  
2001 ◽  
Vol 44 (2) ◽  
Author(s):  
I.A. Russell

Fish assemblages were sampled at six sites in the Breede River in the Bontebok National Park during 1999 and 2000. A total of 380 fish from 12 species was recorded. Indigenous fish collected included one freshwater species (Barbus andrewi), two catodromous species (Anguilla mossambica, Myxus capensis). and three estuarine species (Gilchris- tella aestuaria, Monodactylusfalciformis, Mugil cephalus). Four of the species recorded were aliens (Tinea tinea, Lepomis macrochirus, Micropterus salmoides, Micropterus dolomieu) and two species translocated from other South African rivers (Tilapia sparrmanii, Clarias gariepinus). A further two indigenous species (Sandelia capensis, Pseudobarbus biirchelli) could potentially occur within the park, though the high abundance of alien predators means that there is little chance for recolonisation from tributaries higher in the Breede River system. There is little opportunity to meaningfully conserve most indigenous freshwater fish in Bontebok National Park.



2010 ◽  
Vol 1 (2) ◽  
pp. 73-85 ◽  
Author(s):  
Jeffrey C. Jolley ◽  
David W. Willis ◽  
Richard S. Holland

Abstract Food availability may regulate fish recruitment, both directly and indirectly. The availability of zooplankton, especially to newly hatched larvae, is thought to be crucial to their early growth and survival. We examined stomach contents of larval bluegill Lepomis macrochirus and yellow perch Perca flavescens in Pelican Lake and Cameron Lake, Nebraska, in 2004 and 2005. We also determined zooplankton availability and calculated prey selection using Chesson's α. In addition, we investigated potential match–mismatch regulation of recruitment from 2004 to 2008. Bluegill positively selected copepod nauplii and Bosmina spp., and yellow perch often selected copepods. Abundant zooplankton populations were available for consumption. Matches of both larval bluegill and yellow perch abundance to zooplankton abundance were detected in all years; exact matches were common. Mismatches in predator and prey production were not observed. Predation by age-0 yellow perch on age-0 bluegill was not observed, even though yellow perch hatched 2 mo prior to bluegill. Given that zooplankton were abundant and well-timed to larval fish relative abundance over the time span of this study, the match–mismatch hypothesis alone may not fully account for observed recruitment variability in these populations. Environmental conditions may also affect recruitment and warrant further investigation.



<em>Abstract.</em>—An investigation of historical fisheries information for pools 4–13 of the upper Mississippi River (UMR) was conducted to 1) determine the pre-1938 relative abundance and distribution of bluegill <em>Lepomis macrochirus </em>and largemouth bass <em>Micropterus salmoides, </em>2) determine the composition and relative abundance of the preimpoundment fish assemblage, and 3) determine if a shift in frequency of occurrence and relative abundance has occurred due to impoundment.



Behaviour ◽  
2019 ◽  
Vol 156 (15) ◽  
pp. 1495-1517 ◽  
Author(s):  
Adrienne R. McLean ◽  
Sherry N.N. Du ◽  
Jasmine A. Choi ◽  
Brett M. Culbert ◽  
Erin S. McCallum ◽  
...  

Abstract Wastewater from municipal, agricultural and industrial sources is a pervasive contaminant of aquatic environments worldwide. Most studies that have investigated the negative impacts of wastewater on organisms have taken place in a laboratory. Here, we tested whether fish behaviour is altered by exposure to environmentally relevant concentrations of wastewater effluent in the field. We caged bluegill sunfish (Lepomis macrochirus) for 28 days at two sites downstream (adjacent to and 870 m) from a wastewater treatment plant and at a reference site without wastewater inputs. We found that exposed fish had a dampened response to simulated predation compared to unexposed fish, suggesting that fish may be at greater risk of predation after exposure to wastewater effluent. Fish held at the different sites did not differ in activity and exploration. Our results suggest that predator avoidance may be impaired in fish exposed to wastewater effluent, which could have detrimental implications for aquatic communities.



2020 ◽  
Vol 2 (1) ◽  
Author(s):  
J J Lomax ◽  
T F Martinson ◽  
Y E Jimenez ◽  
E L Brainerd

Synopsis In ray-finned fishes, the sternohyoideus (SH) is among the largest muscles in the head region and, based on its size, can potentially contribute to the overall power required for suction feeding. However, the function of the SH varies interspecifically. In largemouth bass (Micropterus salmoides) and several clariid catfishes, the SH functions similarly to a stiff ligament. In these species, the SH remains isometric and transmitts power from the hypaxial musculature to the hyoid apparatus during suction feeding. Alternatively, the SH can shorten and contribute muscle power during suction feeding, a condition observed in the bluegill sunfish (Lepomis macrochirus) and one clariid catfish. An emerging hypothesis centers on SH muscle size as a predictor of function: in fishes with a large SH, the SH shortens during suction feeding, whereas in fish with a smaller SH, the muscle may remain isometric. Here, we studied striped surfperch (Embiotoca lateralis), a species in which the SH is relatively large at 8.8% of axial muscle mass compared with 4.0% for L. macrochirus and 1.7% for M. salmoides, to determine whether the SH shortens during suction feeding and is, therefore, bifunctional—both transmitting and generating power—or remains isometric and only transmits power. We measured skeletal kinematics of the neurocranium, urohyal, and cleithrum with Video Reconstruction of Moving Morphology, along with muscle strain and shortening velocity in the SH and epaxial muscles, using a new method of 3D external marker tracking. We found mean SH shortening during suction feeding strikes (n = 22 strikes from four individual E. lateralis) was 7.2 ± 0.55% (±SEM) of initial muscle length. Mean peak speed of shortening was 4.9 ± 0.65 lengths s−1, and maximum shortening speed occurred right around peak gape when peak power is generated in suction feeding. The cleithrum of E. lateralis retracts and depresses but the urohyal retracts and depresses even more, a strong indicator of a bifunctional SH capable of not only generating its own power but also transmitting hypaxial power to the hyoid. While power production in E. lateralis is still likely dominated by the axial musculature, since even the relatively large SH of E. lateralis is only 8.8% of axial muscle mass, the SH may contribute a meaningful amount of power given its continual shortening just prior to peak gape across all strikes. These results support the finding from other groups of fishes that a large SH muscle, relative to axial muscle mass, is likely to both generate and transmit power during suction feeding.



1968 ◽  
Vol 25 (2) ◽  
pp. 285-297 ◽  
Author(s):  
Allen Keast

In Lake Opinicon, Ontario, the diet of the black crappie, Pomoxis nigromaculatus, undergoes a progressive change from one in which planktonic Crustacea and small-bodied Diptera larvae predominate (in fish of body length from about 60 to 115 mm), to a diet of insect larvae and fish (in fish 160–240 mm). Most food items prove to be midwater forms and the Diptera larvae are almost entirely Chaoborus and Procladius, which are free-swimming in the water column at night.An unusual feature is the prolonged nature of the Cladocera-Copepoda eating phase, which continues into year III and to a body length of about 160 mm. Gill-raker counts show P. nigromaculatus to have a specialized screen with 25–29 rakers on the first arch. In this it differs from cohabiting centrarchids in Lake Opinicon, Ambloplites rupestris, Micropterus salmoides, and Lepomis macrochirus, in which the rakers on the first arch number only 8–12. In these species plankton feeding is restricted to the earlier stages.



Sign in / Sign up

Export Citation Format

Share Document