Density-dependent regulation of year-class strength in age-0 juvenile striped bass (Morone saxatilis)

2012 ◽  
Vol 69 (3) ◽  
pp. 430-446 ◽  
Author(s):  
E.J. Martino ◽  
E.D. Houde

Abundance of age-0 striped bass ( Morone saxatilis ) exhibits 50-fold variability in Chesapeake Bay. Processes that act to reduce and thus regulate this variability were investigated. The potential for density-dependent regulation of growth and mortality in the early juvenile stage and its causes were investigated. Data from multiple seine and trawl surveys in upper Chesapeake Bay and tributaries were analyzed to construct growth and mortality indices having a high degree of spatial and temporal resolution. Age-0 mean lengths in September were inversely related to density, ranging from 67.8 mm in 1994, when mean density was 0.036·m–2, to 104.5 mm in 1992, when mean density was 0.003·m–2. Except for the Potomac River, evidence for density-dependent growth was consistent across subpopulations. Bioenergetics modeling indicated that prey consumption was limiting except in low-abundance years. Mortality increased with respect to abundance and also was density-dependent. The significant interaction between age-0 juvenile length in September and subsequent winter temperature on mortality indicated that density-dependent growth leads to size-selective overwinter mortality. A statistical model including age-0 abundances, age-0 lengths, and winter temperature explained a substantial fraction of variability and the mechanisms for regulation of striped bass recruitment.

2003 ◽  
Vol 60 (6) ◽  
pp. 1275-1287 ◽  
Author(s):  
Edward S Rutherford ◽  
Kenneth A Rose ◽  
James H Cowan

Abstract Quantifying the degree of density-dependence in stock–recruit relationships is critical to understanding fish population dynamics. The Shepherd and Cushing (1980) model couples a simple model of density-dependent larval growth with a constant rate of mortality to predict numbers surviving to recruitment. The model has not been evaluated using field data, nor have its predictions been compared with those from other models. Here, the S&C model, an individual-based model (IBM), and a regression model are applied to 8 years of field data for striped bass larvae in the Potomac River, Maryland, USA, to predict larval carrying capacity (K) and percentage of recruitment lost as a consequence of density-dependent growth. The IBM and the regression model were corroborated by comparing their predictions of average growth rates of larvae and relative recruitment strengths to observed values for the 8 years of field data. Although the IBM and the regression model differed in their predictions of several important intermediate variables, both models predicted higher values of K and lower values of density-dependent growth than did the S&C model. Over the 8 years, the IBM and the regression model predicted an average of 0.3 and 1.8% recruitment lost as a result of density-dependent growth, respectively. In contrast, the S&C model predicted much higher recruitment lost (average of 27%). Slight differences in the assumed rate of mortality used in the S&C model resulted in values of carrying capacity similar to those predicted by the IBM and the regression model. Difficulties in estimating parameters of the S&C model from field data are discussed.


1998 ◽  
Vol 55 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Thomas P Hurst ◽  
David O Conover

Winter mortality plays a significant role in the dynamics of some temperate fish populations and has been shown to be size-dependent for some species, but not for others. Our objective was to determine how winter mortality affects the recruitment dynamics of Hudson River striped bass (Morone saxatilis). We used catch-per-unit-effort data from three separate surveys targeting young-of-the-year (YOY), overwintering, and age 1 striped bass. Age 1 abundance was negatively correlated with the severity of winter. In contrast, the abundance of age 0 fish was not correlated with age 1 abundance, suggesting that winter mortality greatly modifies year-class strength. A progressive increase in the mean length of YOY fish, coupled with a decrease in the coefficient of variation in length, occurred during some winters. Laboratory experiments showed that growth in length requires temperatures in excess of 10°C; hence, these changes likely result from selective mortality of smaller fish. Direct evidence of size-dependent mortality was obtained from a laboratory experiment that exposed fish to ambient conditions throughout the winter. Accounting for interannual differences in the severity and size dependency of winter mortality may improve our ability to evaluate striped bass year-class strength in the Hudson River.


2010 ◽  
Vol 90 (3) ◽  
pp. 181-189
Author(s):  
MA Matsche ◽  
A Overton ◽  
J Jacobs ◽  
MR Rhodes ◽  
KM Rosemary

1976 ◽  
Vol 54 (4) ◽  
pp. 449-462 ◽  
Author(s):  
I. Paperna ◽  
D. E. Zwerner

Information on the distribution, life cycle, and seasonal abundance of the copepod Ergasilus labracis Krøyer, parasitic on the gills of lower Chesapeake Bay striped bass, Morone saxatilis (Walbaum), is presented after a 12-month survey. The overall prevalence of E. labracis was 90% in all localities sampled and it was found to be as euryhaline as its host; it has been found in salinities from 0.l‰ to 32.0‰. E. labracis was present and reproductively active throughout the year, suffering only a temporary slowdown in egg production at the beginning of the winter. Peak invasion of striped bass gills by infective larvae occurred during April and May; minor peaks were also recorded during July and October. The free-living stage was estimated to last as long as 6 weeks during early spring. Duration of other developmental stages was also extrapolated. Attempts to rear larvae in the laboratory past the metanauplius stage failed. Larvae could be kept for a maximum of 23 days after hatching if fed nannoplankton and kept at 20 °C in river water of 16–18‰.


1999 ◽  
Vol 56 (2) ◽  
pp. 275-287 ◽  
Author(s):  
Jeffrey A Buckel ◽  
David O Conover ◽  
Nancy D Steinberg ◽  
Kim A McKown

We measured bluefish (Pomatomus saltatrix) weights, densities, and prey sizes during the summers of 1992 and 1993 and diets over a 4-year period (1990-1993) in the Hudson River estuary. This information was used to estimate the loss of young-of-the-year (YOY) striped bass (Morone saxatilis) resulting from YOY bluefish predation. We then compared this predation mortality with the total loss of striped bass in the system. Data from sampling surveys conducted since the mid-1970's were used to examine relationships between bluefish abundance and striped bass recruitment levels. YOY striped bass, bay anchovy (Anchoa mitchilli), Atlantic silverside (Menidia menidia), and Alosa spp. dominated YOY bluefish diets. There were ontogenetic and interannual differences in YOY bluefish diets. Bluefish avoided striped bass at low densities but selected for them at high densities, suggesting a density-dependent feeding response. In the early summer of 1993, bluefish predation accounted for 50-100% of the total estimated loss of YOY striped bass. A significant negative correlation exists between the relative magnitude of striped bass recruitment and bluefish abundance. We conclude that YOY bluefish are important predators of estuarine fish and can have a substantial impact on their recruitment.


Sign in / Sign up

Export Citation Format

Share Document