Blood Lactate Concentrations and Mortality in Sockeye and Chinook Salmon (Oncorhynchus nerka and O. tshawytscha) After Exercise

1968 ◽  
Vol 25 (3) ◽  
pp. 473-484
Author(s):  
William D. Gronlund ◽  
Harold O. Hodgins ◽  
Raymond C. Simon ◽  
Douglas D. Weber

Blood lactate concentrations in 306 sockeye salmon (Oncorhynchus nerka), taken at sea in 1965 and 1966 by purse seine, gillnet, and longline, and in 98 starved or fed immature chinook salmon (O. tshawytscha) that had been exercised in a saltwater pond were generally below those reported in the literature as related to stress-induced mortality in salmon. No sockeye salmon held in shipboard tanks for observation died within 2 days after capture, although most of the fish died later. Few fish died among starved or fed immature chinook salmon in salt water within 10 days after capture by hook and line or after being chased to exhaustion; blood lactate concentrations in these fish were generally higher than in sockeye salmon after stress but were still usually below the reported critical level of 125 mg/100 ml.We concluded that neither the adult sockeye nor immature chinook salmon suffered immediate fatigue-related mortality, but the possibility that fatigue could induce delayed mortality was not excluded.

1994 ◽  
Vol 51 (4) ◽  
pp. 974-980 ◽  
Author(s):  
Stanley D. Rice ◽  
Robert E. Thomas ◽  
Adam Moles

We compared the impact of exposure to seawater on three sockeye salmon (Oncorhynchus nerka) stocks: one that normally migrates to sea as underyearlings (sea-type) and two with the more common life history strategies of 1 (river-type) or 2 (lake-type) yr of freshwater residence prior to seaward migration. Innate differences in survival, ability to regulate tissue chlorides, and oxygen consumption when first introduced into salt water were more evident in April and May when fish were less than 50 mm in length. In fish longer than 50 mm, the only significant differences among the stocks were in saltwater growth. Between June and August, sea-type fish showed faster growth than river-type fish which in turn grew faster than lake-type fish. When introduced into salt water in October, virtually no growth occurred in any stock, regardless of fish size. River-type and lake-type sockeye, which normally overwinter 1 and 2 yr, respectively, in freshwater, can be reared in seawater if underyearlings are raised to a length of 50 mm before release into salt water, similar to the normal life history of sea-type underyearlings. Early life history appears to be influenced more by habitat than by genetics.


2000 ◽  
Vol 203 (7) ◽  
pp. 1161-1172 ◽  
Author(s):  
I. Novales Flamarique

This study examines the spectral sensitivity and cone topography of the sockeye salmon Oncorhynchus nerka throughout its life history with special emphasis on ultraviolet sensitivity. Electrophysiological recordings from the optic nerve show that ultraviolet sensitivity is greatly diminished at the smolt stage but reappears in adult fish weighing about 201 g. Concomitantly, light microscopy observations of the retina show that ultraviolet cones disappear from the dorsal and temporal retina at the smolt stage but reappear at the adult stage. These changes occur for sockeye salmon raised in fresh water or salt water after smoltification. In contrast to this ultraviolet cycle, the other cone mechanisms (short-, middle- and long-wavelength-sensitive) and the rod mechanism remain present throughout ontogeny. The natural appearance and disappearance of ultraviolet cones in salmonid retinas follows surges in blood thyroxine at critical developmental periods. Their presence coincides with times of prominent feeding on zooplankton and/or small fish that may be more visible under ultraviolet light. It is proposed that the primary function of ultraviolet cones in salmonids is to improve prey contrast.


2012 ◽  
Vol 69 (2) ◽  
pp. 330-342 ◽  
Author(s):  
Eduardo G. Martins ◽  
Scott G. Hinch ◽  
David A. Patterson ◽  
Merran J. Hague ◽  
Steven J. Cooke ◽  
...  

Recent studies have shown that warm temperatures reduce survival of adult migrating sockeye salmon ( Oncorhynchus nerka ), but knowledge gaps exist on where high-temperature-related mortality occurs along the migration and whether females and males are differentially impacted by river temperature. In this study, we monitored 437 radio-tagged Fraser River sockeye salmon and used capture–mark–recapture modelling approaches to investigate whether river thermal conditions differentially influence (i) spatial patterns of survival along a 413-km stretch of migration and (ii) survival of the sexes. Regardless of water temperature, survival decreased in the river section containing the most hydraulically difficult passages of the migration. However, when water temperature was warm (19 °C), survival decreased even further in the final 186 km of the migration prior to reaching the spawning grounds, particularly in females. Female and male survival differed but only when they experienced warm river temperatures. Under such conditions, the overall freshwater migration survival of males was 1.6 times higher (0.79 ± 0.09 standard error, SE) than that of females (0.50 ± 0.11 SE). As maturing female sockeye salmon maintain higher levels of plasma cortisol compared with males, we suspect that females could be immuno-compromised and thus less resistant to pathogens whose rates of development are accelerated by warm temperatures.


1983 ◽  
Vol 40 (6) ◽  
pp. 821-824 ◽  
Author(s):  
N. P. Boyce ◽  
W. Craig Clarke

Migrant sockeye salmon yearlings (Oncorhynchus nerka) were captured at the outlet of Babine Lake, British Columbia, in 1979 and 1980 and transported to the laboratory for evaluation of their seawater adaptability in a 24-h challenge test. Fish infected with the cestode Eubothrium salvelini had a reduced ability to adapt to salt water, as evidenced by greater mortality and elevated plasma sodium levels after challenge. The prevalence of infection was 60% in 1979 and 30% in 1980. In 1979, mortality during challenge was significantly higher among infected than among noninfected fish; the elevation of plasma sodium levels in the infected fish was not statistically significant. In 1980, both infected and noninfected fish had improved seawater adaptability compared with the previous year; infected fish did not suffer significantly higher mortality after challenge but their plasma sodium levels were elevated significantly compared with the noninfected fish. The reduced seawater adaptability of infected fish is likely to reduce their ocean survival considerably.


1979 ◽  
Vol 36 (10) ◽  
pp. 1265-1277 ◽  
Author(s):  
R. F. Blackett

Runs of sockeye salmon (Oncorhynchus nerka) and chinook salmon (O. tshawytscha) were established at Frazer Lake, Kodiak Island, Alaska by adult spawner transplants, fry plants, and eyed-egg plants. Falls in the lake outlet formed a barrier to natural ascent of anadromous fish until construction of a fishpass in 1962. Accounts of successful introduction and development of viable and self-sustaining runs of salmon where none previously existed and the lake was inaccessible are scarce in the history of salmon fisheries on the Pacific Coast. The first sockeye returning to Frazer Lake in 1956 were produced from egg plants in 1951. Annual sockeye returns have progressively increased over a 28-yr period reaching record passage of 141 981 in 1978. Sockeye spawning has extended into new areas as returns increased. Spawning area capacity is projected to be sufficient for 365 000 sockeye while rearing area is estimated to be sufficient to support fry production from 400 000 sockeye. Sockeye returns per spawner have averaged 3.2 for six parent years (1966–71) in which returns are complete. A chinook run was created from plants of 160 000 fry over a 4-yr period beginning in 1966. Chinook have returned to spawn in specific sites of fry release above the falls and in the lower river. Key words: salmon introduction, enhancement technique, sockeye, chinook, Frazer Lake, salmon establishment


1975 ◽  
Vol 32 (2) ◽  
pp. 233-242 ◽  
Author(s):  
C. Groot ◽  
K. Simpson ◽  
I. Todd ◽  
P. D. Murray ◽  
G. A. Buxton

Movements of adult sockeye salmon (Oncorhynchus nerka) entering the Skeena River were examined in 1969 and 1970 by ultrasonic tracking methods. Fifteen of 18 sockeye released in the lower river seemed to move passively in and out with flood and ebb streams. Two fish moved upstream independent of tides and one salmon swam against ebb and flood currents. Ground speeds in both years of operation were 1.6 km/h during rising and 2.1 km/h during falling tides, causing the fish to be transported downstream by about 3 km per tidal cycle. Three salmon released outside the river mouth in salt water also seemed to ride the tidal flows passively. Ground speeds during ebb (3.6 km/h) were again greater than during flood (2.0 km/h), indicating a net offshore movement. We conclude that these passive movements are not an artifact but that sockeye salmon normally slow down or pause upon reaching the "home river" and drift for a period in tidal currents in the estuary and river mouth before migrating upstream.


1974 ◽  
Vol 31 (7) ◽  
pp. 1211-1214 ◽  
Author(s):  
Edward M. Donaldson ◽  
J. R. McBride

Injection of a chinook salmon (Oncorhynchus tshawytscha) gonadotropin preparation into gonadectomized sockeye salmon (Oncorhynchus nerka) did not result in any increase in the plasma concentration of cortisol or cortisone, nor did it stimulate the activity of the interrenal tissue. On the other hand, injection of mammalian ACTH (Acthar) did result in an increase in the plasma concentration of cortisol and cortisone, and stimulated the interrenal tissue. The salmon gonadotropin preparation, however, elicited an increase in thyroid activity. The results suggest that in the salmon, ovulation is not caused by gonadotropin induced interrenal corticosteroidogenesis.


1971 ◽  
Vol 28 (8) ◽  
pp. 1173-1179 ◽  
Author(s):  
M. D. Qureshi ◽  
R. V. Hledin ◽  
P. A. Anastassiadis ◽  
W. E. Vanstone

The levels of hexosamine, sialic acid, fucose, and protein in serum of sockeye salmon (Oncorhynchus nerka) and, to a limited extent, in sera of coho salmon (O. kisutch) and chinook salmon (O. tshawytscha) at two reproductive stages, were determined. Hexosamine, sialic acid, fucose, hexose, seromucoid, and protein content of sexually maturing (early) and mature (spawning) sockeye salmon were studied and a comparison was attempted with the corresponding composition of bovine serum. Content of the above serum constituents was lower in spawning than in maturing populations. Protein content was much less, hexosamine a little less, and sialic acid higher, in the sera of sockeye salmon than in bovine serum. The protein–carbohydrate complex of serum appeared to contain more hexosamine and much more sialic acid than the protein–carbohydrate complex of bovine serum. Furthermore, the sialic acid-to-hexosamine ratio was much higher in sera of salmon than in bovine serum. Some other sex and reproductive stage differences were detected and reported.


Sign in / Sign up

Export Citation Format

Share Document