Diurnal Variation of Dissolved Inorganic Carbon and its Use in Estimating Primary Production and CO2 Invasion in Lake 227

1973 ◽  
Vol 30 (10) ◽  
pp. 1501-1510 ◽  
Author(s):  
D. W. Schindler ◽  
E. J. Fee

Standard in situ measurements of phytoplankton production and 14C bottle bioassays gave erroneous results when applied to lake 227, a eutrophic softwater lake in the Canadian Shield. Errors were found to be due to diurnal variations in the degree of carbon limitation of phytoplankton, and to invasion of CO2 from the atmosphere and hypolimnion.A method based on diurnal measurements of dissolved inorganic carbon, community respiration, and invasion of CO2, using gas chromatography, is described. Production by phytoplankton in lakes fertilized with nitrogen and phosphorus was found to be several times higher than in natural lakes of the area. Net production during summer stratification was found to equal invasion of CO2 from the atmosphere.The new technique should have application in other eutrophic low carbon lakes, where 14C tracer techniques are encumbered by serious technical complications.

1973 ◽  
Vol 30 (10) ◽  
pp. 1511-1524 ◽  
Author(s):  
D. W. Schindler ◽  
V. E. Frost ◽  
R. V. Schmidt

Two new techniques for measuring photosynthesis by benthic algal flora in waters low in dissolved inorganic carbon are described. The first uses gas chromatography to measure changes in DIC in incubation chambers directly. The second is a variation of the usual 14C procedure, in which disappearance of 14C from the water is measured by liquid scintillation instead of uptake of 14C by the algae. This procedure is simpler than measuring the uptake of 14C, because digestion and/or combustion of samples is not necessary. Results are compared with the commonly employed 14C uptake and O2 release techniques.Tests showed that heterogeneity of substrate was the major source of variation in in situ results, being large enough to make interpretation of seasonal effects and other causal factors extremely difficult.Annual production by epilithiphyton in two natural lakes in the Experimental Lakes Area (ELA) was 5.19 g C and 5.18 g C/m2 of substrate annually for lakes 239 and 240, respectively. These are the lowest values recorded for freshwater lakes at temperate latitudes.Because DIC and O2 concentrations could be measured simultaneously, it was possible to calculate photosynthetic quotients on several dates. These were extremely high, averaging 2.6 for the summer of 1971.


1973 ◽  
Vol 30 (10) ◽  
pp. 1415-1440 ◽  
Author(s):  
D. W. Schindler ◽  
H. Kling ◽  
R. V. Schmidt ◽  
J. Prokopowich ◽  
V. E. Frost ◽  
...  

Lake 227, a small lake with extremely low concentrations of dissolved inorganic carbon, was fertilized with PO4 and NO3 for 4 years, beginning in 1969. The additions increased natural inputs of phosphorus and nitrogen about five times.Phytoplankton standing crop increased nearly two orders of magnitude, and the Cryptophyceae and Chrysophyceae present in natural lakes of the area were replaced by Chlorophyta and Cyanophyta. The standing crop of phytoplankton per square meter was near the maximum which could theoretically be maintained by surface light, in spite of the low carbon concentrations. Added phosphate and nitrate were rapidly removed by phytoplankton, so that concentrations in the lake remained low.Almost all of the added nutrient was retained by the lake, in spite of relatively fast water renewal times. An average of 80% of the phosphorus income of the lake was sedimented. There was no return of phosphorus from sediments in spite of anoxic conditions in the hypolimnion.Photosynthesizing plankton reduced dissolved inorganic carbon concentrations severely, causing a flux of atmospheric CO2 into the lake. From 69 to 95% of the inorganic + particulate carbon supplied to the lake was from the atmosphere. Results demonstrate that low carbon concentrations do not hinder eutrophication if phosphorus and nitrogen supplies are adequate.


2013 ◽  
Vol 27 (5) ◽  
pp. 635-642 ◽  
Author(s):  
Andres M. Cardenas-Valencia ◽  
Lori R. Adornato ◽  
Ryan J. Bell ◽  
Robert H. Byrne ◽  
R. Timothy Short

2015 ◽  
Vol 49 (7) ◽  
pp. 4441-4449 ◽  
Author(s):  
Zhaohui Aleck Wang ◽  
Frederick N. Sonnichsen ◽  
Albert M. Bradley ◽  
Katherine A. Hoering ◽  
Thomas M. Lanagan ◽  
...  

2012 ◽  
Vol 117 (G2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Cristian Estop-Aragonés ◽  
Klaus-Holger Knorr ◽  
Christian Blodau

Author(s):  
Carol Robinson

This chapter describes how the activity of phytoplankton, bacteria, and Archaea drive the marine biogeochemical cycles of carbon, nitrogen, and phosphorus, and how climate driven changes in plankton abundance and community composition influence these biogeochemical cycles in the North Atlantic Ocean and adjacent seas. Carbon, nitrogen, and phosphorus are essential elements required for all life on Earth. In the marine environment, dissolved inorganic carbon, nitrogen, and phosphorus are utilized during phytoplankton growth to form organic material, which is respired and remineralized back to inorganic forms by the activity of bacteria, Archaea, and zooplankton. The net result of the photosynthesis, calcification, and respiration of marine plankton is the uptake of carbon dioxide from the atmosphere, its sequestration to the deep ocean as organic and inorganic carbon, and its availability to fuel all fish and shellfish production.


2008 ◽  
Vol 5 (1) ◽  
pp. 43-53 ◽  
Author(s):  
J. H. Andersson ◽  
C. Woulds ◽  
M. Schwartz ◽  
G. L. Cowie ◽  
L. A. Levin ◽  
...  

Abstract. The short-term fate of phytodetritus was investigated across the Pakistan margin of the Arabian Sea at water depths ranging from 140 to 1850 m, encompassing the oxygen minimum zone (~100–1100 m). Phytodetritus sedimentation events were simulated by adding ~44 mmol 13C-labelled algal material per m2 to surface sediments in retrieved cores. Cores were incubated in the dark, at in situ temperature and oxygen concentrations. Overlying waters were sampled periodically, and cores were recovered and sampled (for organisms and sediments) after durations of two and five days. The labelled carbon was subsequently traced into bacterial lipids, foraminiferan and macrofaunal biomass, and dissolved organic and inorganic pools. The majority of the label (20 to 100%) was in most cases left unprocessed in the sediment at the surface. The largest pool of processed carbon was found to be respiration (0 to 25% of added carbon), recovered as dissolved inorganic carbon. Both temperature and oxygen were found to influence the rate of respiration. Macrofaunal influence was most pronounced at the lower part of the oxygen minimum zone where it contributed 11% to the processing of phytodetritus.


2013 ◽  
Vol 10 (11) ◽  
pp. 6911-6928 ◽  
Author(s):  
F. Tamooh ◽  
A. V. Borges ◽  
F. J. R. Meysman ◽  
K. Van Den Meersche ◽  
F. Dehairs ◽  
...  

Abstract. A basin-wide study was conducted in the Tana River basin (Kenya) in February 2008 (dry season), September–November 2009 (wet season) and June–July 2010 (end of the wet season) to assess the dynamics and sources of dissolved inorganic carbon (DIC) as well as to quantify CO2 fluxes, community respiration (R), and primary production (P). Samples were collected along the altitudinal gradient (from 3600 to 8 m) in several headwater streams, reservoirs (Kamburu and Masinga), and the Tana River mainstream. DIC concentrations ranged from 0.2 to 4.8 mmol L−1, with exceptionally high values (3.5 ± 1.6 mmol L−1) in Nyambene Hills tributaries. The wide range of δ13CDIC values (−15.0 to −2.4‰) indicate variable sources of DIC, with headwater streams recording more positive signatures compared to the Tana River mainstream. With with only a few exceptions, the entire riverine network was supersaturated in CO2, implying the system is a net source of CO2 to the atmosphere. pCO2 values were generally higher in the lower Tana River mainstream compared to headwater tributaries, opposite to the pattern typically observed in other river networks. This was attributed to high suspended sediment in the Tana River mainstream fuelling in-stream community respiration and net heterotrophy. This was particularly evident during the 2009 wet season campaign (median pCO2 of 1432 ppm) compared to the 2010 end of the wet season (1002 ppm) and 2008 dry season (579 ppm). First-order estimates show that in-stream community respiration was responsible for the bulk of total CO2 evasion (77 to 114%) in the Tana River mainstream, while in the tributaries, this could only account for 5 to 68% of total CO2 evasion. This suggests that CO2 evasion in the tributaries was to a substantial degree sustained by benthic mineralisation and/or lateral inputs of CO2-oversaturated groundwater. While sediment loads increased downstream and thus light availability decreased in the water column, both chlorophyll a (0.2 to 9.6 μg L−1) and primary production (0.004 to 7.38 μmol C L−1 h−1) increased consistently downstream. Diurnal fluctuations of biogeochemical processes were examined at three different sites along the river continuum (headwater, reservoir and mainstream), and were found to be substantial only in the headwater stream, moderate in the reservoir and not detectable in the Tana River mainstream. The pronounced diurnal fluctuations observed in the headwater stream were largely regulated by periphyton as deduced from the low chlorophyll a in the water column.


Sign in / Sign up

Export Citation Format

Share Document