Embryonic Development, Early Growth, and Meristic Variation in Rainbow Trout (Salmo gairdneri) Exposed to Combinations of Light Intensity and Temperature

1975 ◽  
Vol 32 (3) ◽  
pp. 397-402 ◽  
Author(s):  
Wen-hwa Kwain

Lowest mortality rates of rainbow trout (Salmo gairdneri) embryos were obtained at temperatures of 7 and 10 C and light intensities of 0.2 and 20 lx. Temperatures of 3 and 15 C and an intensity of 400 lx were near the thresholds for development. Eggs exposed to 0.2 lx required 111 days to reach 50% hatch at 3 C, but 26 days at 15 C; those exposed to 20 lx, 97 days at 3 C and 25 days at 15 C.Growth rates of rainbow trout 145 days after hatch were significantly different (P < 0.05) at 10 and 3 C, and 20, 2, and 0.2 lx. The fastest growth occurred at 10 C and 2 lx, and the lowest growth at 3 C and 0.2 lx. For increment of body weight it was about 23.8%/day of initial weight and 6.6% at 3 C. At light intensities of 20, 2, and 0.2 lx, the rate per day was 24.7, 17.2, and 11.2%, respectively. However, increases in length occurred at a much reduced rate.Variations in numbers of vertebrae, gill rakers, and fin rays were positively correlated with the embryonic development rate. Longer incubation periods were usually associated with more meristic elements, regardless of the environmental factors involved.

1985 ◽  
Vol 27 (3) ◽  
pp. 289-297 ◽  
Author(s):  
Moira M. Ferguson ◽  
Roy G. Danzmann ◽  
Fred W. Allendorf

We compare the developmental rate of six closely related hatchery strains of rainbow trout. Hatching time, morphological analysis, and the pattern of ontogenetic change in lactate dehydrogenase, malate dehydrogenase, glucosephosphate isomerase, and phosphoglucomutase activities indicate significant differences in developmental rate between strains. There is close concordance among the different measures of developmental rate. Strains with higher levels of heterozygosity, as estimated from electrophoretic analysis of 42 loci, developed faster than less heterozygous strains. The variation in developmental rate in these closely related strains indicates that there is substantial genetic variation affecting the developmental process in rainbow trout.Key words: development rate, intraspecific variation, rainbow trout.


Aquaculture ◽  
1984 ◽  
Vol 42 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Igor I. Solar ◽  
Edward M. Donaldson ◽  
George A. Hunter

1981 ◽  
Vol 45 (1) ◽  
pp. 137-148 ◽  
Author(s):  
D. Knox ◽  
C. B. Cowey ◽  
J. W. Adron

1. Rainbow trout (Salmo gairdneri) of mean initial weight 35 g were given one of five experimental diets for 20 weeks. The diets contained (g/kg dry diet) 15 calcium, 10 phosphorus and graded levels of magnesium from 0.04 (diet no. 1) to 1.0 (diet no. 5). In a second experiment rainbow trout of mean initial weight 16 g were given one of six experimental diets for 20 weeks. The diets contained (g/kg dry diet): Ca (40), P (30) and levels of Mg from 0.06 (diet no. 6) to 2.0 (diet no. 11).2. In both experiments weight gains were lowest in those trout given diets containing the basal levels of Mg (diet no. 1 and diet no. 6) but increased with increasing dietary Mg concentration. In neither experiment was there any further increase in weight gain once the Mg concentration reached 0.25–0.5 g/kg dry diet; weight gain reached a plateau at this dietary Mg level.3. The following trends occurred in serum electrolyte concentrations as dietary Mg increased. Mg increased in both experiments, in Expt 2 it reached a maximum of 1 mmol/l when the diet containted 0.5 g Mg/kg and did not increase further; sodium was positively correlated in both experiments; potassium decreased and in Expt 2 reached a plateau minimum of 1.7 mmol/l at a dietary Mg concentration of 0.5 g/kg; Ca and P altered little in either experiment.4. In both experiments renal Ca concentrations were greatly increased in trout given diets lacking supplementary Mg; they fell to low levels (3–5 mmol/kg) when diets conained 0.15 g Mg/kg or more. Renal K and P concentrations were negatively correlated with dietary Mg in Expt 2; other electrolytes measured were not altered in concentration by the treatments used.5. Extracellular fluid volume (ECFV) of muscle was negatively correlated with dietary Mg. In Expt 2 it reached a minimal or normal value at 0.5 g Mg/kg diet and did not decease further. Muscle Mg concentration increased with diet Mg in both experiments and muscle K concentration was also correlated with diet Mg in Expt 2. These changes were related to the shift in muscle water. In Expt 1, P concentration was decreased with increasing diet Mg but in Expt 2 its concentration increased, these changes may have been connected with the three-fold difference in dietary P in the two experiments.6. By contrast with skeletal muscle, Mg levels in cardiac muscle increased at low dietary Mg intakes.7. Concentrations of electrolytes in liver did not alter with dietary treatments used.8. The results show that Mg requirement of rainbow trout is met by a diet containing 0.5 g Mg/kg diet.


1976 ◽  
Vol 33 (1) ◽  
pp. 19-24 ◽  
Author(s):  
R. M. Ginetz ◽  
P. A. Larkin

Predation of rainbow trout (Salmo gairdneri) on migrant sockeye salmon (Oncorhynchus nerka) fry in experimental streams was higher on fry at an earlier development stage, in moonlight by contrast to cloudy night light intensities, at lesser turbidities, and at lower stream velocities. At dusk light intensities, from.05 to.30 ft-c, mortality from predation was inversely related to light intensity. The longer the period of exposure of fry to naturally declining light intensities prior to downstream movement, the lower was the loss to predators. Exposure of predators to high light intensities prior to the downstream movement of fry resulted in decreased fry mortality. Fry that had survived exposure to predators in an experimental stream 1 and 2 days previous were less vulnerable to predation than "naive" fry. Successive exposures further decreased the loss to predation. Fry enumerated at a counting fence suffered less predation than fry not enumerated. Experienced fry moved downstream more rapidly than naive fry.In laboratory aquaria, experienced fry formed compact schools prior to and in response to stimuli, while naive fry formed loose schools or did not school. Experienced fry were less active in responding to stimuli. Enumerated fry resembled experienced fry; nonenumerated fry resembled naive fry.Various techniques of enhancing sockeye salmon fry survival during downstream migration are suggested by these results.


1977 ◽  
Vol 34 (5) ◽  
pp. 639-648 ◽  
Author(s):  
Kenneth E. F. Hokanson ◽  
Charles F. Kleiner ◽  
Todd W. Thorslund

Specific growth and mortality rates of juvenile rainbow trout (Salmo gairdneri) were determined for 50 days at seven constant temperatures between 8 and 22 °C and six diel temperature fluctuations (sine curve of amplitude ±3.8 deg C about mean temperatures from 12 to 22 °C). For constant temperature treatments the maximum specific growth rate of trout fed excess rations was 5.12%/day at 17.2 °C. An average specific mortality rate of 0.35%/day was observed at the optimum temperature and lower. At temperatures in excess of the growth optimum, mortality rates were significantly higher during the first 20 days of this experiment than the last 30 days. The highest constant temperature at which specific growth and mortality rates became equal (initial biomass remained constant over 40 days) was 23 °C. The upper incipient lethal temperature was 25.6 °C for trout acclimated to 16 °C. A yield model was developed to describe the effects of temperature on the living biomass over time and to facilitate comparison of treatment responses. When yield was plotted against mean temperature, the curve of response to fluctuating temperatures was shifted horizontally an average 1.5 deg C towards colder temperatures than the curve of response to constant temperature treatments. This response pattern to fluctuating treatments indicates that rainbow trout do not respond to mean temperature, but they acclimate to some value between the mean and maximum daily temperatures. These data are discussed in relation to establishment of criteria for summer maximum temperatures for fish. Key words: constant temperature, fluctuating temperature, specific growth rate, specific mortality rate, yield, lethal temperature, zero net biomass, rainbow trout, thermal criteria


Sign in / Sign up

Export Citation Format

Share Document