Opportunistic Cyclopoid Prédation on Fish Larvae

1984 ◽  
Vol 41 (3) ◽  
pp. 526-532 ◽  
Author(s):  
John H. Hartig ◽  
David J. Jude

Exceptional spring spawning of yellow perch (Perca flavescens) in an inland coastal lake resulted in very high larval fish densities (up to 41 900/1000 m3) and facultative predation by adult female Diacyclops thomasi on newly hatched larvae (maximum predation density: 8740/1000 m3), as evidenced by cyclopoid attachment to fish larvae in field collections. This predation suggests that larval fish mortality and possibly cyclopoid population growth are affected. Opportunistic cyclopoid predation on fish larvae may also alter zooplankton community structure by changing the feeding pattern of cyclopoids. Lack of significant predation on other species of fish larvae is probably due to temporal and spatial asynchrony of predator and prey, low probability of encounter, robust nature of certain fish species, and effective swimming and escape ability.

2010 ◽  
Vol 1 (2) ◽  
pp. 73-85 ◽  
Author(s):  
Jeffrey C. Jolley ◽  
David W. Willis ◽  
Richard S. Holland

Abstract Food availability may regulate fish recruitment, both directly and indirectly. The availability of zooplankton, especially to newly hatched larvae, is thought to be crucial to their early growth and survival. We examined stomach contents of larval bluegill Lepomis macrochirus and yellow perch Perca flavescens in Pelican Lake and Cameron Lake, Nebraska, in 2004 and 2005. We also determined zooplankton availability and calculated prey selection using Chesson's α. In addition, we investigated potential match–mismatch regulation of recruitment from 2004 to 2008. Bluegill positively selected copepod nauplii and Bosmina spp., and yellow perch often selected copepods. Abundant zooplankton populations were available for consumption. Matches of both larval bluegill and yellow perch abundance to zooplankton abundance were detected in all years; exact matches were common. Mismatches in predator and prey production were not observed. Predation by age-0 yellow perch on age-0 bluegill was not observed, even though yellow perch hatched 2 mo prior to bluegill. Given that zooplankton were abundant and well-timed to larval fish relative abundance over the time span of this study, the match–mismatch hypothesis alone may not fully account for observed recruitment variability in these populations. Environmental conditions may also affect recruitment and warrant further investigation.


1982 ◽  
Vol 39 (12) ◽  
pp. 1563-1568 ◽  
Author(s):  
John H. Hartig ◽  
David J. Jude ◽  
Marlene S. Evans

Cyclopoid predation on fish larvae, as evidenced by copepods attached to larvae in field collections, was quantitatively investigated during 1975–76 in southeastern Lake Michigan. Although six species of fish larvae were collected, predation occurred primarily (98%) on alewife (Alosa pseudoharengus); 2% of the predators were attached to spottail shiner (Notropis hudsonius) larvae. No cyclopoids were observed on rainbow smelt (Osmerus mordax), yellow perch (Perca flavescens), common carp (Cyprinus carpio), or sculpin (Cottus spp.) larvae. Most alewife larvae attacked were 3–8 mm long; older larvae and larvae of more robust species, such as yellow perch and spottail shiner, are apparently immune to such predation. Most predation (99%) occurred in July when alewife larvae were numerous and cyclopoids abundant. Fish larvae with attached copepods were found only in night collections. Most cyclopoid predators (99%) were adult female Diacyclops thomasi and Acanthocyclops vernalis. Other predaceous species of zooplankton, that occurred in close temporal and spatial proximity to fish larvae, apparently were not predaceous on these organisms.Key words: Alosa pseudoharengus larvae, Notropis hudsonius larvae, Diacyclops thomasi, Acanthocyclops vernalis, cyclopoid predation, Lake Michigan


1981 ◽  
Vol 38 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Ibrahim H. Zeitoun ◽  
John A. Gulvas ◽  
Doyle B. Roarabaugh

Samples of ichthyoplankton entrained through 2.0-mm and 9.5-mm-slot opening cylindrical wedge-wire screens and through an open pipe (control) were collected in June, July, and August 1979, 1067 m off the southeast shore of Lake Michigan at a depth of 10.7 m. Screens were designed for a flow rate of 1.9 m3 min−1 at 15.2 cm s−1 through slot velocity. Ambient composition and density of ichthyoplankton were determined by net tows. Rainbow smelt (Osmerus mordax), alewife (Alosa pseudoharengus), and yellow perch (Perca flavescens) larvae were common in both entrainment and tow collections. Eggs were found almost exclusively in entrainment collections. Ambient larval fish densities were about 11 times greater than those found in entrainment collections. Total entrainments through either screen and the open pipe were not statistically significant. Larval avoidance and, to a lesser extent, screen exclusion were responsible for the low entrainment. We estimated that about 90% of native fish larvae at the site avoided pumping.Key words: Lake Michigan, fish larvae, fish eggs, ichthyoplankton, entrainment, power plants, avoidance


1993 ◽  
Vol 50 (4) ◽  
pp. 743-749 ◽  
Author(s):  
Christina M. Wahl ◽  
Edward L. Mills ◽  
William N. McFarland ◽  
Joseph S. DeGisi

Age-0 yellow perch, Perca flavescens, shift from pelagic to demersal waters of Oneida Lake, New York, between late June to mid-July, when they reach standard lengths of 24–31 mm. The timing of this habitat shift coincides with the size range over which yellow perch achieve a degree of visual resolution that nearly equals that of adult yellow perch, from 174 min of arc in newly hatched larvae to 9–12 min in adults. This visual improvement is reflected in the yellow perch's diet, which consists of an increasingly wider range of prey sizes and types. If twin cones are counted as functionally separate photoreceptors, there is a significant improvement of the calculated visual acuity in larval fish with lenses < 1 mm in diameter but not in older fish with larger lenses. During its rapid growth phase the most optimistic calculation of visual acuity in a young yellow perch is insufficient to explain the feeding success necessary at this time. We suggest therefore that young yellow perch spend more time in search of prey than their adult counterparts.


2009 ◽  
Vol 33 (3) ◽  
pp. 556-561
Author(s):  
Gui-Jun YANG ◽  
Bo-Qiang QIN ◽  
Guang GAO ◽  
Xiao-Dong WANG ◽  
Hong-Yan WANG

2004 ◽  
Vol 61 (11) ◽  
pp. 2111-2125 ◽  
Author(s):  
Richard P Barbiero ◽  
Marc L Tuchman

The crustacean zooplankton communities in Lakes Michigan and Huron and the central and eastern basins of Lake Erie have shown substantial, persistent changes since the invasion of the predatory cladoceran Bythotrephes in the mid-1980s. A number of cladoceran species have declined dramatically since the invasion, including Eubosmina coregoni, Holopedium gibberum, Daphnia retrocurva, Daphnia pulicaria, and Leptodora kindti, and overall species richness has decreased as a result. Copepods have been relatively unaffected, with the notable exception of Meso cyclops edax, which has virtually disappeared from the lakes. These species shifts have for the most part been consistent and equally pronounced across all three lakes. Responses of crustacean species to the Bythotrephes invasion do not appear to be solely a consequence of size, and it is likely that other factors, e.g., morphology, vertical distribution, or escape responses, are important determinants of vulnerability to predation. Our results indicate that invertebrate predators in general, and invasive ones in particular, can have pronounced, lasting effects on zooplankton community structure.


2016 ◽  
Vol 13 (116) ◽  
pp. 20160068 ◽  
Author(s):  
Gen Li ◽  
Ulrike K. Müller ◽  
Johan L. van Leeuwen ◽  
Hao Liu

Larvae of bony fish swim in the intermediate Reynolds number ( Re ) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left–right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae.


Sign in / Sign up

Export Citation Format

Share Document