Snowpack Ion Accumulation and Loss in a Basin Draining to Lake Superior

1987 ◽  
Vol 44 (11) ◽  
pp. 1812-1819 ◽  
Author(s):  
Robert Stottlemyer

The objective of this study was to relate winter precipitation ionic inputs, snowpack retention, and change in first-order stream chemistry with spring snowpack melt. During winter 1982–83, measurement of precipitation inputs, snowpack concentration and loading, and streamwater concentration and discharge of Ca2+, K+, H+, NO3−, and SO42− from a 176-ha watershed reveals that only H+ might be lost from the snowpack before first thaw. Above-freezing soil temperature beneath the snowpack may be a factor in H+ loss. An initial 1-d thaw resulted in loss of over one third (6 eq∙ha−1) of the snowpack Ca2+. Over one half the snowpack load of K+, H+, NO3−, and SO42−, was lost in a subsequent midwinter freeze–thaw period. Snowpack loading of ionic species was reduced by 70–90% before peak spring melting and stream discharge. Ecosystem H+ retention and biological uptake of NO3− further mitigate ionic "pulses" in streamwater. Sulfate discharge exceeds bulk inputs, which suggests significant dry deposition input and little forest soil retention of this anion. The snowpack was relatively small, which limits wider application of these results to the region.

Hydrobiologia ◽  
1989 ◽  
Vol 179 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Wayne F. McDiffett ◽  
Andrew W. Beidler ◽  
Thomas F. Dominick ◽  
Kenneth D. McCrea

2021 ◽  
Author(s):  
Heide Stein ◽  
Hans Jürgen Hahn

<p>In this study, the temporal variability of the hydrological exchange between stream water (SW) and groundwater (GW), colmation, hyporheic invertebrate fauna, organic matter (OM) and physicochemical parameters were examined for the period of one year. Sampling and measuring were conducted monthly from May 2019 to April 2020 at the Guldenbach river, a second order stream in Rhineland-Palatinate, Germany. All hyporheic samples were extracted from a depth of 15 cm below stream bottom. Colmation was measured quantitatively in the same depth.</p><p>Following the biotic and abiotic patterns found, three temporal stages of different hydrological conditions can be described:</p><ul><li>1) Strong floods, in February and March 2020 caused hydromorphological alterations of the river bed, leading to a decolmation of the hyporheic zone, a wash out of OM and hyporheic fauna. Due to high GW tables the vertical hydrological gradient (VHG) was positive indicating upwelling GW.</li> <li>2) In the months of Mai to August 2019 and April 2020, precipitation and stream discharge were lowest. Predominantly exfiltrating conditions were observed, while the amount of fine sediments (clay and silt) increased as well as colmation. High densities of hyporheic fauna, dominated by fine sediment dwelling taxa, were assessed.</li> <li>3) From September 2019 to January 2020 stream discharge was low. The VHG became increasingly negative, indicating downwelling SW. In accordance, colmation increased continuously, while densities of hyporheic invertebrates decreased and sediment dwellers became more dominant.</li> </ul><p>Precipitation, discharge events and GW table were found to be the driving factors for the annual dynamics of the hydrological exchange as well as for colmation, fauna and hydrochemistry. Electric conductivity seems a suitable indicator for the origin of water with high values in months of low precipitation and lower values after extensive precipitation events, respectively. Hyporheic fauna displayed a significant seasonality and the community structure was correlated with colmation and changes in the VHG.</p><p>This pronounced seasonality seems to be typical of many streams and should be considered for the monitoring of sediments and hyporheic habitats: Seasons with lower stream discharge are probably the most critical periods for sediment conditions.</p><p>We assume that the basic patterns of the dynamics observed basically reflect the natural situation in the catchment. However, the strength of surface run-off and the amount of fine sediments are mainly the result of anthropogenic activities and land use in the catchment.</p><p>These findings underline the significance of dynamical processes for the assessment and implementation of the Water Framework Directive.</p>


2013 ◽  
Vol 13 (4) ◽  
pp. 371-375 ◽  
Author(s):  
Luciana Falci Theza Rodrigues ◽  
Lucas Deziderio Santana ◽  
Roberto da Gama Alves

There are few reports in the literature about the colonization of benthic macroinvertebrates on bryophytes. The aim of the present study was to analyzed the oligochaetes established on bryophytes adhered to stones in a first-order stream. The collections were carried out in an Atlantic Forest fragment area during the dry and rainy seasons. We identified 15 taxa from a total of 422 oligochaetes specimens, of which the most abundant were Pristina sp.1, Enchytraeidae and Pristina jenkinae. Unlike other habitats, where the abundance of macroinvertebrates tends to be greater in the dry season, we did not find any significant differences in the abundance, richness, composition and diversity between the two periods. The results of this study indicate that bryophytes are possible areas of refuge for oligochaetes in periods of faster water flow.


2020 ◽  
Vol 54 (4) ◽  
pp. 1079-1095
Author(s):  
Henrike Brüchner-Hüttemann ◽  
Christoph Ptatscheck ◽  
Walter Traunspurger

Abstract Meiofaunal abundance, biomass and secondary production were investigated over 13 months in an unpolluted first-order stream. Four microhabitats were considered: sediment and the biofilms on dead wood, macrophytes and leaf litter. The relative contribution of the microhabitats to secondary production and the influence of environmental factors on meiofaunal density distribution were estimated. We expected (1) meiofaunal abundance and biomass to exhibit seasonal patterns, with more pronounced seasonal fluctuations on macrophytes and leaf litter than in the other microhabitats, (2) annual secondary production to be highest in sediment; however, the relative contribution of the microhabitats to monthly secondary production would change during the year, and (3) a bottom-up driven influence on meiofaunal density distribution in the microhabitats. Meiofaunal annual mean abundance, biomass and secondary production were 7–14 times higher in sediment and on dead wood than on macrophytes and leaf litter. Significant seasonal patterns described the meiofaunal abundance in sediment and on leaf litter as well as the biomass in sediment, on macrophytes and leaf litter. Organisms in sediment and on dead wood contributed 48 and 43%, respectively, to secondary production m−2, but in regard to the stream area covered by the microhabitats, sediment had the highest share (80%). Significant determinants of the density distribution were AFDM, protozoans, bacteria and Chl-a, which influenced all meiofaunal groups. Our study clearly indicates that meiofaunal organisms in sediment and on dead wood have a remarkable share on total secondary production of lotic systems which is especially relevant for forested low-order streams.


2012 ◽  
Vol 10 (2) ◽  
pp. 389-399 ◽  
Author(s):  
Jislaine Cristina da Silva ◽  
Rosilene Luciana Delariva ◽  
Karine Orlandi Bonato

This study addressed the feeding ecology of fish fauna from a first-order stream located in a rural area. The purposes were to evaluate the influence of interspecific, seasonal and spatial factors on the diet, examine the dietary overlap, and determine the predominant food sources. Sampling was conducted in December 2007, September 2008, and March 2009, in three 50-m stretches of Itiz stream (upstream, intermediate, and downstream), through electrofishing. A total of 1,102 stomach contents were analyzed from 14 species, by the volumetric method. In general, allochthonous resources were predominant in the diets. Astyanax aff. fasciatus, Astyanax aff. paranae, Astyanax bockmanni, and Bryconamericus aff. iheringi consumed a higher proportion of plant remains, and Bryconamericus stramineus consumed predominantly Hymenoptera. The diets of Cetopsorhamdia iheringi, Characidium aff. zebra, Imparfinis schubarti, and Trichomycterus sp. consisted of aquatic insects, especially immature forms of Trichoptera, Ephemeroptera, Plecoptera, and Diptera. Hypostomus ancistroides, Hisonotus sp., Poecilia reticulata, and Rineloricaria aff. pentamaculata exploited mainly detritus, while Rhamdia quelen used a variety of items, predominantly terrestrial insects. Detrended Correspondence Analysis (DCA) showed a clear distinction among the species, with different morphology and feeding tactics. The Multi-Response Permutation Procedure (MRPP) supported this differentiation, and also indicated significant spatial and temporal variations in the dietary composition; the Indicator Value Method (IndVal) indicated the main items that contributed to these differences. The diet overlap among species was low (< 0.4) to around 78% of pairs, and the mean value did not vary significantly among the sites or between hydrological periods within each site. According to the null model of Pianka’s index, the values for dietary overlap were significantly higher than expected at random, showing evidence of resource sharing. This was related to the availability of allochthonous resources, highlighting the importance of riparian vegetation as a source of these resources for maintaining the fish fauna of the stream.


2010 ◽  
Vol 31 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Kristen Cecala ◽  
Michael Dorcas ◽  
Steven Price

AbstractThe juvenile stage for many reptiles is considered “the lost years” because of low capture probabilities, however understanding factors impacting juvenile survivorship and recruitment is critical for conservation of populations. We studied the ecology of juvenile Northern watersnakes, Nerodia sipedon, by intensively sampling a first-order stream and determined the occupancy of juveniles in 30 low-order streams in the Piedmont of North Carolina. Juveniles were relatively abundant within a single stream (n = 62 ± 9), and their capture probabilities were positively related to increasing stream-water temperatures. We also found that juveniles had high survivorship (ϕ = 0.87 ± 0.017). Occupancy of juvenile N. sipedon in low-order, Piedmont streams may be greater at streams that have confluences with high order streams or lakes, which potentially support adult N. sipedon populations. This study provides important information regarding the natural history of juvenile reptiles and indicates the importance of low order streams as habitat for N. sipedon populations.


2016 ◽  
Vol 38 (4) ◽  
pp. 429 ◽  
Author(s):  
Evaneide Nogueira Lopes ◽  
Milza Celi Fedatto Abelha ◽  
Valéria Flávia Batista-Silva ◽  
Elaine Antoniassi Luiz Kashiwaqui ◽  
Dayani Bailly

Sign in / Sign up

Export Citation Format

Share Document