Mitochondrial DNA diversity, population structure, and conservation genetics of four native carps within the Yangtze River, China

1997 ◽  
Vol 54 (1) ◽  
pp. 47-58 ◽  
Author(s):  
G Lu ◽  
S Li ◽  
L Bernatchez

Silver carp (Hypophthalmichthys molitrix), grass carp (Ctenopharyngodon piceus), bighead carp (Aristichthys nobilis), and black carp(Mylopharyngodon piceus) rank first, second, fourth, and seventh in world fish production. In China, the Yangtze River harbours the most important natural populations of these species. We performed a polymerase chain reaction - restriction fragment length poymorphism analysis on 365 juvenile fish representing three nursery grounds to provide a first assessment of the mitochondrial DNA diversity in these species and test the hypothesis that they are composed of more than one genetic stock. The mitochondrial DNA diversity was high in silver, bighead, and black carp, and much less in grass carp. Analysis of heterogeneity of genotype frequency, fixation indices, intersite molecular variance, and localization indices indicated that juvenile silver, bighead, and black carp from different nursery areas belong to genetically distinct populations. These results suggest that their population structure may be determined by the number of environmental settings that permit closure of their life cycle. They also imply that carp from the Yangtze River cannot be managed as a single unit and that human disturbance through exploitation and habitat modifications, in particular the construction of the Three Gorges Dam, will have differential impacts on fish abundance for different parts of the river.


<em>Abstract</em>.—In the 1970s, commercial fishers reported sightings of grass carp <em>Ctenopharyngodon idella </em>in large rivers and associated backwaters of Louisiana; the first specimen in Louisiana Department of Wildlife and Fisheries’ fishery independent sampling was recorded in 1976. Beginning in the early 1980s, commercial fishers noted increasing populations of bighead carp <em>Hypophthalmichthys nobilis </em>and silver carp <em>H. molitrix </em>(together, the bigheaded carps). Populations of bigheaded carps appear to be increasing at a much slower rate than in the Midwest¸ possibly due to limited suitability of and access to backwater habitat for juvenile fish. In 2002, harvester reports of sporadic captures of “different-looking” grass carp indicated the possible presence of black carp <em>Mylopharyngodon piceus</em>. Because both normal diploid and triploid (in which triploidy has been induced to cause sterility) black carp have been stocked in the Mississippi basin, determination of the ploidy (number of chromosome sets) of these fishes is important. Since 2002, postmortem ploidy determinations using cells from eyeballs removed from six wild black carp captured in Louisiana showed each to be a normal diploid, indicative of breeding capability and potential reproducing populations. Although reported commercial landings of grass and bigheaded carps have been as high as 34,830 kg/year, limited market demand in past years resulted in many captures being discarded. A protocol for obtaining samples for easily determining ploidy is reported here. Accurate data on Asian carp distributions and their reproductive potential provides information to fisheries researchers that will be constructive in documenting the spread of these invasive species and in the assessment of risk to habitats.





ZooKeys ◽  
2021 ◽  
Vol 1055 ◽  
pp. 135-148
Author(s):  
Dongqi Liu ◽  
Feng Lan ◽  
Sicai Xie ◽  
Yi Diao ◽  
Yi Zheng ◽  
...  

To investigate the genetic effects on the population of Coreius guichenoti of dam constructions in the upper reaches of the Yangtze River, we analyzed the genetic diversity and population structure of 12 populations collected in 2009 and 2019 using mitochondrial DNA (mtDNA) control regions. There was no significant difference in genetic diversity between 2009 and 2019 (P &gt; 0.05), but the population structure tended to become stronger. Genetic differentiation (FST) among five populations (LX, BB, YB, SF and JA) collected in 2009 was not significant (P &gt; 0.05). However, some populations collected in 2019 were significantly differentiated (P &lt; 0.05), indicating that the population structure has undergone change. A correlation analysis showed that the genetic diversity of the seven populations collected in 2019 was significantly negatively correlated with geographical height (r = −0.808, P = 0.028), indicating that the populations at high elevations were more vulnerable than those at low elevations. In order to prevent the further decrease of genetic diversity and population resources, some conservation and restoration suggestions, such as fish passage and artificial breeding, are put forward.



<em>Abstract</em>.—Bighead Carp <em>Hypophthalmichthys nobilis </em>and Silver Carp <em>H. molitrix </em>are native in the Yangtze River and extremely important economically and culturally as food fishes; however, the two species have declined due to overfishing and anthropogenic modifications to hydrology and water quality. Bighead Carp and Silver Carp were imported to North America in the early 1970s, escaped confinement, and have now become undesirable and problematic invasive species. The two carps have become the most abundant fish species in many portions of their invaded range, which continues to expand. We compare the biology, status, and management of these species between their natal range in the Yangtze River and their invaded habitats of the Mississippi River basin.





<em>Abstract</em>.—The Asian black carp <em>Mylopharyngodon piceus </em>is of interest to the aquaculture industry in the United States as a biological control for snails and mollusks. However, past experience in North America with other Asian carps has raised concern that black carp will establish wild populations and negatively affect native populations of fish and invertebrates, especially mollusks. The demand for black carp has led biologists to seek ways to allow their use while at the same time maintaining control over their distribution and reproduction. Physical containment and restrictions on importation, release, and stocking have mostly failed. Control of reproduction holds more promise. The induction of triploidy (having three sets of chromosomes), which can render an individual biologically sterile, is of particular interest. The main purpose of this study was to evaluate the efficiency of proposed testing procedures used to assure genetic triploidy in black carp prior to distribution by the state of Missouri, using black carp and grass carp <em>Ctenopharyngodon idella</em>. Our objectives were to (1) verify if the ploidy determination methodology (nuclear size) employed was 100% accurate, (2) determine growth and survival of juvenile black carp over extended periods of time under laboratory and pond conditions, and (3) histologically examine development and gametogenesis in gonads collected from triploid and diploid black and grass carps of different ages and stages of maturation. Comparison of erythrocyte nuclear size using the Coulter counter method versus the more accurate method of flow cytometry that measures DNA content indicated an error rate of 0.25% by the former method. Black carp grew and survived well in mid-Missouri ponds. Triploid grass carp males appeared to produce functional gametes, and some triploid black carp male testes had apparently normal spermatocytes within cysts. A few normally developing oocytes at previtellogenic and vitellogenic stages were observed in triploid grass carp females, and a few normal perinuclear oocytes could be identified in triploid black carp females. Currently, the standards of the U.S. Fish and Wildlife Service’s triploid grass carp voluntary inspection program are being followed by some states to manage triploid black carp. Our results indicate that although the percentage of diploid black carp that could pass through the currently proposed screening program is small, overall numbers of diploid black carp distributed in a state could be substantial depending on the number of triploids distributed. Furthermore, despite indications that triploid male black carp can be expected to be functionally sterile, reproductive studies may be warranted given the large wild populations of diploid grass carp, bighead carp <em>Hypophthalmichthys nobilis</em>, and silver carp <em>H. molitrix </em>in the Mississippi River basin system.





Sign in / Sign up

Export Citation Format

Share Document