scholarly journals Comparative examination of scale-explicit biological and physical processes: recruitment of Pacific hake (Merluccius productus)

1999 ◽  
Vol 56 (S1) ◽  
pp. 170-179 ◽  
Author(s):  
John K Horne ◽  
Paul E Smith ◽  
David C Schneider

The creation, maintenance, and destruction of aquatic organism distributions result from biological and physical processes that operate at different spatial and temporal scales. Rate diagrams plot and contour ratios of process rates as a function of spatial and temporal scale to summarize the relative importance of demographics, growth, and kinematics. We demonstrate the utility of this approach by examining physical and biological processes that influence the distribution and survival of larval and juvenile Pacific hake (Merluccius productus) in the California Current region. Processes that influence changes in hake biomass switch from mortality and drift among larvae to somatic growth and active locomotion among juveniles. Comparison of hake rate diagrams with those of capelin (Mallotus villosus) and Atlantic cod (Gadus morhua) show that dominant processes differ across scales, across life history stages, and across species.


2000 ◽  
Vol 57 (7) ◽  
pp. 1355-1368 ◽  
Author(s):  
Richard L O'Driscoll ◽  
David C Schneider ◽  
George A Rose ◽  
George R Lilly

Analysis of simulated data showed that potential contact statistics could be used to describe spatial pattern in sample density data. Potential contact is a new method, analogous to Ripley's K function for mapped point pattern analysis. Potential contact can be used to describe spatial pattern and association over a range of scales without grouping data and is robust against the presence of zeros. The statistical output is ecologically interpretable, as a measure of the degree of contact between individuals. This new technique was applied to examine changes in the spatial distribution of Atlantic cod (Gadus morhua) off Newfoundland, Canada, from 1985 to 1994, a period that encompassed a collapse of the cod stock. Sample data from bottom-trawl surveys indicated that cod were aggregated in patches with dimensions of 100-250 km. During the period of cod decline in the 1990s, spatial structure changed in three ways: the number of patches decreased, patch size shrank, and contact with conspecifics at small (10-20 km) scales fell. Cod were broadly associated with capelin (Mallotus villosus), a major prey species. Spatial distribution of capelin changed over the same time period as changes in cod distribution, and there was no evidence that contact between cod and capelin decreased.



2020 ◽  
Vol 77 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Christian Irgens ◽  
Arild Folkvord ◽  
Håkon Otterå ◽  
Olav S. Kjesbu

Specific impacts of somatic growth, sexual maturation, and spawning events on otolith zone formation in Atlantic cod (Gadus morhua) were assessed in a 33-month tank experiment, using Barents Sea cod and Norwegian coastal cod. High and low feeding ration combinations were used to mimic environmental stressors in the field. For both stocks, apparent macrostructural “spawning zones” in otoliths are registered in statutory stock monitoring programs to estimate age at maturity, thus adding key information to stock biomass assessments. We found that substantial energy investments in reproduction caused reductions in otolith growth and altered proportional width between translucent and opaque zones. These effects, however, were only statistically significant among individuals with high reproductive investments, while otoliths from individuals with low investments did not differ from the otoliths for immatures. Reproduction may thus not necessarily induce spawning zones, and alternatively, spawning zones may not necessarily reflect reproduction. Altogether, this suggests that the individual energy level, as a premise for metabolic activity, plays a key role in the formation of such zones and thus is related to environmental conditions.



2000 ◽  
Vol 57 (7) ◽  
pp. 1321-1325 ◽  
Author(s):  
D P Swain ◽  
A F Sinclair

Like most other stocks of Atlantic cod (Gadus morhua) in the Northwest Atlantic, cod in the southern Gulf of St. Lawrence declined to low abundance in the early 1990s. Recovery has been slow in contrast with the rapid recovery from similar levels of abundance in the mid-1970s. This difference reflects remarkably high prerecruit survival of cod in the earlier period of low abundance rather than unusually poor survival in the 1990s. The period of high prerecruit survival of cod coincided with the collapse of herring (Clupea harengus) and mackerel (Scomber scombrus) stocks resulting from overfishing. These pelagic fishes are potential predators or competitors of the early life history stages of cod. We report a strong negative relationship between the biomass of these pelagic fishes and recruitment rate of southern Gulf cod. This is consistent with the recent suggestion that the success of large predatory fishes may depend on "cultivation" effects in which the adults crop down forage fishes that are predators or competitors of their young. Our results also point to the possibility of a triangular food web involving cod, seals, and pelagic fishes, making it difficult to predict the effect of a proposed cull of seals on the recovery of cod.



2014 ◽  
Vol 71 (4) ◽  
pp. 784-793 ◽  
Author(s):  
Darrell R. J. Mullowney ◽  
George A. Rose

Abstract The slow recovery of the “northern” Atlantic cod (Gadus morhua) stock off Newfoundland and Labrador has been ascribed to many factors. One hypothesis is poor feeding and condition as a consequence of a decline in capelin (Mallotus villosus), their former main prey. We compared the growth and condition of cod from known inshore (Smith Sound) and offshore (Bonavista Corridor) centres of rebuilding in wild subjects versus captive subjects fed an unlimited diet of oily rich fish. Wild fish in these areas have had different diets and population performance trends since stock declines in the early 1990s. Captive cod from both areas grew at the same rates and achieved equivalent prime condition, while their wild counterparts differed, with smaller sizes, lower condition in small fish, and elevated mortality levels in the offshore centre. Environmental temperature conditions did not account for the differences in performance of wild fish. Our results suggest that fish growth and condition, and hence rebuilding in the formerly large offshore spawning components of the northern cod, have been limited by a lack of capelin in their diet. Furthermore, we suggest that these groups are unlikely to rebuild until a recovery in capelin occurs.



1999 ◽  
Vol 202 (15) ◽  
pp. 2111-2120 ◽  
Author(s):  
T.F. Galloway ◽  
E. Kjorsvik ◽  
H. Kryvi

The present study describes the development of the axial musculature in first-feeding larvae of Atlantic cod (Gadus morhua L.) with different somatic growth rates achieved by using different nutritional conditions. Muscle growth was assessed by determining the number of muscle fibres (hyperplasia) and the growth of existing fibres (hypertrophy). Larvae were fed rotifers containing a high (1. 4; treatment 1) or low (0.2; treatment 2) ratio of docosahexaenoic acid to eicosapentaenoic acid from day 5 after hatching. From day 17, the larvae were fed Artemia nauplii with the same enrichment in both treatments. Treatment 1 gave the highest somatic growth rate and hence the highest dry mass at the end of the experiment, but no difference in larval standard length was found between treatments. In slow-growing larvae, higher priority was thus put into reaching a certain length than into increasing muscle mass. The largest fibres, which were present from hatching, increased in cross-sectional area during larval development, but no differences were found between treatments in the cross-sectional area of individual fibres or the total cross-sectional area of these fibres at the end of the experiment. The first white recruitment fibres were observed at the dorsal and ventral apices of the myotome at approximately the onset of first feeding (larval length 4.5 mm). In larvae 8.5 mm long, the total cross-sectional area of white muscle fibres in the treatment 2 group was 75 % of that in the treatment 1 group. The highest somatic growth rate was associated with an increased contribution of hyperplasia to axial white muscle growth. In the faster-growing larval group, the relative contribution of hyperplasia to the total white muscle cross-sectional area was 50 %, whereas it was 41 % in the slower-growing larval group. The subsequent growth potential may thus be negatively affected by inadequate larval feeding.



2019 ◽  
Vol 77 (2) ◽  
pp. 624-632 ◽  
Author(s):  
Stefan Neuenfeldt ◽  
Valerio Bartolino ◽  
Alessandro Orio ◽  
Ken H Andersen ◽  
Niels G Andersen ◽  
...  

Abstract Five decades of stomach content data allowed insight into the development of consumption, diet composition, and resulting somatic growth of Gadus morhua (Atlantic cod) in the eastern Baltic Sea. We show a recent reversal in feeding level over body length. Present feeding levels of small cod indicate severe growth limitation and increased starvation-related mortality. For young cod, the low growth rate and the high mortality rate are manifested through a reduction in size-at-age. The low feeding levels are likely the result of a decrease in benthic prey abundance due to increased hypoxic areas, while decreasing abundances of pelagic species in the area of cod distribution have prevented a compensatory shift in diet. Our study emphasizes that environmental forcing and the decline in pelagic prey caused changes in consumption and growth rates of small cod. The food reduction is amplified by stunted growth leading to high densities of cod of smaller size competing for the scarce resources. The average growth rate is negative, and only individuals with feeding levels well above average will survive, though growing slowly. These results suggest that the relation between consumption rate, somatic growth and predatorprey population densities is strongly environmentally mediated.



2019 ◽  
Author(s):  
Max Liboiron

This study reports the first baselines of plastic ingestion for three fish species that are common commercial and sustenance food fish in Newfoundland. Species collections occurred between 2015 and 2016 for Atlantic cod (Gadus morhua), Atlantic salmon (Salmo salar), and capelin (Mallotus villosus). The frequency of occurrence (%FO) of plastic ingestion for both Atlantic salmon (n = 69) and capelin (n = 350) was 0%. Of the 1010 Atlantic cod individuals collected over two years, 17 individuals had ingested plastics, a %FO of 1.68%. This is the only multi-year investigation of plastic ingestion in Atlantic cod for the Northwest Atlantic, and the first baseline of plastic ingestion in Atlantic salmon and capelin on the island of Newfoundland. Considering the ecological, economic, and cultural importance of these fish species, this study is the beginning of a longitudinal study of plastic ingestion to detect any future changes in contamination levels.



1989 ◽  
Vol 46 (11) ◽  
pp. 1904-1913 ◽  
Author(s):  
G. A. Rose ◽  
W. C. Leggett

Geophysically-forced sea temperatures and prey abundance interactively regulated mesoscale (10's to 100's of km) inshore Atlantic Cod (Gadus morhua) distribution patterns in the northeastern Gulf of St. Lawrence, in both 1985 and 1986. Cod were located most often at temperatures within the range 0–5 °C. However, when mean densities of their chief prey (capelin, Mallotus villosus) were high (> 100/105m3) within the coastal zone, cod frequented waters having temperatures similar to those at which this prey were aggregated, within the broader range of temperatures −0.5 to 8.5 °C. The proportions of cod occupying sea temperature strata were significantly and positively correlated with those of capelin (r = 0.64, slope = 0.6, df = 86), in both 1985 and 1986, under two conditions: (1) sea temperatures within the range 1–9 °C; and (2) mean capelin densities > 100/105m3. Under conditions of lower mean capelin densities, cod distributions were independent of those of capelin. At temperatures outside the range 1–9 °C, cod and capelin densities were not correlated, regardless of capelin densities.



1997 ◽  
Vol 54 (4) ◽  
pp. 876-889 ◽  
Author(s):  
K G Magnússon ◽  
T Aspelund

The feeding of a predator on prey that occurs in schools is modelled as a stochastic process involving two random variables: (i) the number of schools that the predator finds per unit time and (ii) the number of prey items captured in each encounter. The number of encounters is governed by a Poisson process and the number of prey items can be either a Poisson random variable or more generally a negative binomial. The principal parameters in the model can be interpreted as the average meal frequency and the average meal size. This model is applied to Atlantic cod (Gadus morhua) feeding on capelin (Mallotus villosus). Cod stomachs from six length-groups were sampled off eastern Iceland and the number of capelin in individual stomachs recorded. The parameters in the stochastic feeding model are estimated by the method of maximum likelihood using the observed frequency distribution of capelin numbers in cod stomachs. The data fit the model well where the meal size is modelled by a negative binomial distribution, but less successfully where the meal size has a Poisson distribution. Finally, using the estimates of average meal frequency and average meal size the average and the standard deviation of consumption rate are calculated.



Sign in / Sign up

Export Citation Format

Share Document